文本分类场景下微调BERT

How to Fine-Tune BERT for Text Classification

论文《How to Fine-Tune BERT for Text Classification?》是2019年发表的一篇论文。这篇文章做了一些实验来分析了如何在文本分类场景下微调BERT,是后面网上讨论如何微调BERT时经常提到的论文。

结论与思路

先来看一下论文的实验结论:

  1. BERT模型上面的层对于文本分类任务更有用;
  2. 选取合适的逐层递减的学习率,Bert可以克服灾难性遗忘问题(catastrophic forgetting problem);
  3. 任务内(Within-task)和领域内(in-domain)继续预训练(further pre-training) 可以显著提高模型的性能;
  4. 在单任务微调之前先进行多任务微调(multi-task fine-tuning)对于单任务微调有帮助,但是其好处没有继续预训练大;
  5. BERT可以改进小数据量的任务。

接下来看论文是如何来微调BERT模型的,论文从如下三种方法中来找最合适的微调方法,因此将微调BERT的方式有三种如上图所示。

  • 微调策略(Fine-Tuning Strategies):在微调BERT时如何利用BERT,比如BERT的哪些层对目标任务更有效。如何选择优化算法和学习率?
  • 继续预训练(Further Pre-training):BERT是在通用领域的语料上训练的,通用领域的数据分布与目标领域很可能不同,所以很自然的想法是在目标领域语料上继续训练BERT。
  • 多任务微调(Multi-task Fine-Tuning):多任务学习已经表现出可以有效利用不同任务之间的共享知识,如果目标领域有多个不同任务,那么在这些任务上同时微调BERT可以带来好处吗?

论文实验设置

  • 使用的模型为base BERT模型:uncased BERT-base模型和Chineses BERT-base模型
  • 使用的数据集的统计信息如下图所示,一共有8个数据集。
    • 情感分析(Sentiment analysis):使用了二分类电影评论数据集IMDb,Yelp评论数据集的二分类和五分类版本。
    • 问题分类(Question classification):六分类版本的TREC数据集,Yahoo! Answers数据集。
    • 话题分类(Topic classification):AG’s News数据集,DBPedia数据集。从SogouCA和SogouCS新闻语料集构建了一个中文话题分类数据集:通过URL来决定话题类别,比如""http://sports.sohu.com"对应"sports"类别;一共选取了"sports",“house”,“business”,“entertainment”,“women”,"technology"共6个类别,每个类别的训练集样本为9000测试集为1000。
  • 数据预处理:遵循BERT论文中的词汇表和分词方式:30,000个token词汇表和用 ##来分割word的WordPiece embedding。数据集中文档长度的统计时基于word piece的。 对于BERT的继续训练,对英文数据集使用spaCy进行句子分割,对中文数据集使用“。”,“?”,“!”来进行句子分割。
  • 超参数
    • 继续预训练在1个TITAN Xp GPU上进行,batch size为32,最大训练长度为128,学习率时5e-5,训练步数为100,000,warm-up步数为10,000。
    • 微调在4个TITAN Xp GPU上进行,为确保显存被充分利用batch size为24,dropout概率为0.1。Adam优化器的 β 1 = 0.9 \beta_1=0.9 β1=0.9 β 2 = 0.999 \beta_2=0.999 β2=0.999。使用slanted triangular learning rates,基础学习率为2e-5,warm-up比例为0.1。根据经验将最大训练epoch设为4,将在验证集上效果最好的模型保存下来用于测试。

在这里插入图片描述

微调策略及实验

将BERT应用到目标任务时,需要考虑几个因素:

  • BERT的最大序列长度时512,所以在使用BERT时先要对长文本进行预处理。
  • BERT-base模型包括一个embedding层,12个encoder层,一个pooling层。在使用时需要选择对文本分类任务最有效的层。
  • 过拟合问题,如何选择合适的学习率防止BERT在目标任务上过拟合。

BERT模型里更低的层包含更通用的信息,所以论文作者考虑对不同的层使用不同的学习率。将BERT模型的参数 θ \theta θ表示成 { θ 1 , ⋯   , θ L } \{\theta^1, \cdots, \theta^L \} {θ1,,θL},其中 θ l \theta^l θl是BERT的第 l l l层的参数,则微调时每一层的参数更新可表示为如下:

θ t l = θ t − 1 l − η l ⋅ ∇ θ l J ( θ ) \theta^l_t = \theta^l_{t-1} - \eta^l \cdot \nabla_{\theta^l} J(\theta) θtl=θt1lηlθlJ(θ)

上式中 η l \eta^l ηl是BERT的第 l l l层的学习率。将基准学习率设置为 η L \eta^L ηL,并使用 η k − 1 = ξ ⋅ η k \eta^{k-1}=\xi \cdot \eta^k ηk1=ξηk表示各层学习率之间的关系; ξ \xi ξ是衰减因子,它小于等于1。当 ξ = 1 \xi = 1 ξ=1时,所有层的学习率都是一样的,也就相当于普通的SGD了。


BERT的最大序列长度时512,所以在使用BERT时先要对长文本进行预处理。考虑如下方法来处理长文本:

  • 裁剪方法(Truncation methods),因为一篇文章的主要信息通常在其开始和结束部位,所以使用了如下三种不同的方法的来裁剪文本。
    • head-only:保留文本前510个token(512-[CLS]-[SEP])
    • tail-only:保留文本最后510个token
    • head+tail:按经验选择前128个token以及最后382个token
  • 层次方法(Hierarchical methods): 设文本的长度为L,将文本划分为 k=L/510 个片段,将它们输入BERT得到k个文本片段的表征向量。每个片段的表征向量取的是最后一层的[CLS]token的隐状态向量。然后使用mean pooling,max pooling, self-attention来组合这些片段的表征向量。
    在IMDb和Sogou数据集上的实验表明 head+tail裁剪方法表现最好,所以在论文后面的实验中都使用这种方法来处理长文本。
    在这里插入图片描述

论文试验了使用BERT不同的层捕捉文本的特征,微调模型并记录模型的测试错误率如下图所示。BERT最后一层微调后的性能最好。
在这里插入图片描述

灾难性遗忘是指在迁移学习过程中,学习新知识时预训练的知识被消除掉了。论文作者使用不同的学习率来微调BERT,在IMDb上的错误率的学习曲线如下图所示。实验表明一个较低的学习率比如2e-5对于BERT克服灾难性遗忘是必要的。在比较激进的学习率如4e-4训练集难以收敛。
在这里插入图片描述

下图是不同的基准学习率和衰减因子在IMDb数据集上的表现,逐层递减的学习率比固定学习率在微调BERT时表现要好,一个合适的选择是 ξ = 0.95 \xi=0.95 ξ=0.95 l r = 2.0 e − 5 lr=2.0e-5 lr=2.0e5
在这里插入图片描述

继续预训练及实验

因为BERT模型是在通用领域的语料上训练的,对于特定领域的文本分类任务比如电影评论,其数据分布可能与BERT不一样。所以可以在领域相关的数据上继续预训练模型,论文进行了三种继续预训练的方法:

  • 任务内的继续预训练(Within-Task Further Pre-Training),在目标任务的训练数据上继续预训练BERT。
  • 领域内的继续预训练(In-Domain Further pre-training),训练数据是从目标任务相同领域来获取的。比如几个不同的情感分类任务,它们有类似的数据分布,在这些任务的组合训练数据上来继续预训练BERT。
  • 跨领域继续预训练(Cross-Domain Further pre-training),包括与目标任务相同领域以及其他领域的训练数据。

任务内的继续预训练:作者试验了不同的训练步数来继续预训练模型,再用之前得到的最好的微调策略来微调模型。如下图所示继续预训练有助于提高BERT的性能,再100K个训练步后得到最佳性能。
在这里插入图片描述

领域内与跨领域继续预训练:将7个英文数据集划分为3个领域:情感,话题,问题,这个划分不是严格正确的,所以作者也将每个数据集当作不同的领域进行了实验,结果如下图所示。

  • 领域内继续预训练总体而言比任务内继续预训练可以带来更好的效果。在句子级别的小数据集TREC上,任务内继续预训练有害于模型效果,而在Yah.A语料上的领域继续预训练后得到了更好的效果。
  • 跨领域继续预训练(下面图中的标记为"all"的行)总体而言没有带来明显的好处。因为BERT已经在通用领域训练过了。
  • IMDb和Yelp在情感领域内没有给互相带来性能提升。可能因为它们分别是关于电影和食物的,数据分布可能有明显差别。
    在这里插入图片描述

将微调后的模型与其他文本分类模型的比较如下图所示,BERT-Feat是指用BERT来进行特征提取之后,将特征作为biLSTM+self-attention的输入embedding。BERT-FiT是直接微调BERT得到的模型,BERT-ITPT-FiT是任务内继续预训练模型,BERT-IDPT-FiT是领域内继续预训练后微调的模型(对应于上图的’all sentiment’, ‘all question’,‘all topic’),BERT-CDPT-FiT对应跨领域继续预训练后微调的模型(对应于上图的"all"一行)

  • BERT-Feat 比除ULMFiT之外的模型效果都要好。
  • BERT-FiT只比BERT-Feat在数据集DBpedia上差一点点,其余数据集上效果都更好。
  • 三个继续预训练模型微调之后的效果都比BERT-Fit模型更好。
  • BERT-IDPT-FiT即领域内继续预训练再微调的效果是最好的。
    在这里插入图片描述

此外作者评估了BERT-FiT和BERT-ITPT-FiT在不同样本数量的训练集上微调训练的效果,在IMDb的训练数据里选了一个子集来微调模型,结果如下图,实验表明BERT在小数据集也可以带来显著效果提升,继续预训练BERT可以进一步提升效果。
在这里插入图片描述

多任务微调及实验

多任务学习可以从不同的监督学习任务共享知识,所有任务共享BERT层和embedding层,每个任务有自己的分类层。
论文在四个英文数据集(IMDb, Yelp P., AG, DBP)上进行多任务微调,先对四个任务一起微调训练,再使用一个更低的学习率在每个数据集上额外进行微调训练。实验结果如下图,结果表明多任务微调对结果有提升,但是跨领域继续微调模型的多任务微调在数据集Yelp P.和AG.上没有效果,作者推测跨领域继续微调和多任务学习微调可能是可互相替代的方法,因为跨领域继续微调模型已经学习到了丰富的领域相关的信息,多任务学习就不会提高文本分类子任务的泛化性了。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/873134.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

海外云手机是否适合运营TikTok?

随着科技的迅猛发展,海外云手机逐渐成为改变工作模式的重要工具。这种基于云端技术的虚拟手机,不仅提供了更加便捷、安全的使用体验,还在电商引流和海外社媒管理等领域展示了其巨大潜力。那么,海外云手机究竟能否有效用于运营TikT…

MDC实现日志链路追踪

MDC是基于Slf4j的 MDC是什么:(简单理解)线程上下文 日志链路追踪解决了什么:1:增强了代码的调试机制2:重点:实现了 多线程环境下 代码链路追踪 基础版本(不涉及异步) 1:引入日志依赖…

计算机网络 第2章 物理层

文章目录 通信基础基本概念信道的极限容量编码与调制常用的编码方法常用的调制方法 传输介质双绞线同轴电缆光纤以太网对有限传输介质的命名规则无线传输介质物理层接口的特性 物理层设备中继器集线器一些特性 物理层任务:实现相邻节点之间比特(0或1&…

鸿蒙开发5.0【Picker的受限权限适配方案】

Picker由系统独立进程实现,应用可以通过拉起Picker组件,用户在Picker上选择对应的资源(如图片、文档等),应用可以获取Picker返回的结果。 类型受限权限使用的picker音频ohos.permission.READ_AUDIO,ohos.p…

Java JVM 垃圾回收算法详解

Java 虚拟机(JVM)是运行 Java 应用程序的核心,它的垃圾回收(Garbage Collection, GC)机制是 JVM 中非常重要的一个部分。垃圾回收的主要任务是自动管理内存,回收那些不再被使用的对象,从而释放内…

linux编译器——gcc/g++

1.gcc linux上先要安装, sudo yum install gcc gcc --version 可以查看当前的版本 ,我们默认安装的是4.8.5的版本,比较低, gcc test.c -stdc99 可以使他支持更高版本的c标准 -o 可以殖指明生成文件的名字,可以自己…

自用NAS系列1-设备

拾光坞 拾光坞多账号绑定青龙面板SMBWebdav小雅alist下载到NASDocker安装迅雷功能利用qBittorrentEEJackett打造一站式下载工具安装jackett插件 外网访问内网拾光客户端拾光穿透公网ipv6路由器配置ipv6拾光坞公网验证拾光坞域名验证 拾光坞 多账号绑定 手机注册拾光坞账号&am…

解决面板安装Node.js和npm后无法使用的问题

使用面板(BT)安装Node.js和npm后,可能会遇到如下问题:即使成功安装了Node.js和npm,服务器仍提示“未安装”,在命令行中使用 node -v 或 npm -v 也没有任何响应。这种问题通常是由于环境变量配置错误或路径问…

设置Virtualbox虚拟机共享文件夹

由于工作环境的原因,选择Virtualbox的方式安装虚拟操作系统,常用的操作系统为ubuntu,不知道道友是否也曾遇到这样的问题,就是虚拟机和主机进行文件拖拽的时候,会因为手抖造成拖拽失败,虚拟机界面显示大个的…

触想全新Z系列工控机扩展IIoT应用潜能

8月31日,触想重磅推出全新Z系列高性能、扩展型工控机——TPC05/06/07-WIPC,提供标准版/双卡槽/四卡槽3款机型选择。 作为边缘计算、机器视觉、AI智能和工业应用的理想机型,Z系列工控机支持Intel第12/13/14代Core™ i3/i5/i7/i9处理器&#xf…

鸿蒙Next-拉起支付宝的三种方式——教程

鸿蒙Next-拉起支付宝的三种方式——教程 鸿蒙Next系统即将上线,应用市场逐渐丰富、很多APP都准备接入支付宝做支付功能,目前来说有三种方式拉起支付宝:通过支付宝SDK拉起、使用OpenLink拉起、传入支付宝包名使用startAbility拉起。以上的三种…

顶踩Emlog插件源码

源码介绍 顶踩Emlog插件源码 前些天看到小刀娱乐网的文章页面有了一些变化,那就是增加了一个有价值/无价值的顶踩按钮。 样式也是非常的好看 再加上两个表情包是非常的有趣。 写到了Emlog系统,效果如上图。 如何使用: 需要在echo_log.…

(二)ASP.NET Core WebAPI项目的启动地址设置

上一篇介绍了ASP.NET Core WebAPI项目创建,可参考: 1.webAPI的访问地址 1) 启动时,选择CoreWebAPI(项目名称)运行项目 可以看到打开浏览器后的地址是:applicationUrl"\"launchUrl 2) 启动时,选择IIS Expre…

ELK学习笔记(一)——使用K8S部署ElasticSearch8.15.0集群

一、下载镜像 #1、下载官方镜像 docker pull elasticsearch:8.15.0 #2、打新tag docker tag elasticsearch:8.15.0 192.168.9.41:8088/new-erp-common/elasticsearch:8.15.0 #3、推送到私有仓库harbor docker push 192.168.9.41:8088/new-erp-common/elasticsearch:8.15.0二、…

一文理解粒子滤波

0. 粒子滤波流程 之前学习记录的文档,这里也拿出来分享一下~ 基本原理:随机选取预测域的 N NN 个点,称为粒子。以此计算出预测值,并算出在测量域的概率,即权重,加权平均就是最优估计。之后按权重比例&…

英文翻译工具怎么选?这4款值得收藏。

英语作为国际通用语言,在我们的日常生活中一直有着很重要的地位,往大了说可以促进国际交流,实现文化传播;往小了说,可以解决很多生活中的小问题。但是在很多情况下英文仍旧是我们一个语言障碍,所以好的翻译…

网络学习-eNSP配置ACL

AR1路由器配置 <Huawei>system-view Enter system view, return user view with CtrlZ. [Huawei]undo info-center enable Info: Information center is disabled. [Huawei]interface gigabitethernet 0/0/0 [Huawei-GigabitEthernet0/0/0]ip address 192.168.2.254 24 …

MapSet之相关概念

系列文章&#xff1a; 1. 先导片--Map&Set之二叉搜索树 2. Map&Set之相关概念 目录 1.搜索 1.1 概念和场景 1.2 模型 2.Map的使用 2.1 关于Map的说明 2.2 关于Map.Entry的说明 2.3 Map的常用方法说明 3.Set的说明 3.1关于Set说明 3.2 常见方法说明 1.搜…

windows 环境下搭建mysql cluster 集群详细步骤

1、环境准备 下载mysql集群版本&#xff0c;我这里下载的是mysql-cluster-8.0.39-winx64 https://dev.mysql.com/downloads/cluster/ 2、创建配置文件 mysql集群版本下载以后解压后目录如下&#xff0c;创建配置文件 config.ini(集群配置文件&#xff0c;my.ini mysql配置…

【大模型基础】P0 大模型之路 —— 窗外灯火阑珊

目录 前言 —— 本系列博文内容何谓语言语言、图形符号、编码与解码基于规则、基于统计 语言模型&#xff08;Language Model&#xff09;预训练语言模型BERT 与 GPT 大模型范式预训练 微调大模型提示 / 指令 OpenAI 若一个语言模型亮起一盏灯&#xff0c;你会发现&#xff0c…