AI基础 L1 Introduction to Artificial Intelligence

什么是AI

Chinese Room Thought Experiment

关于“强人工智能”的观点,即认为只要一个系统在行为上表现得像有意识,那么它就真的具有理解能力。 

实验内容如下:

假设有一个不懂中文的英语说话者被关在一个房间里。房间里有一本用英文写的中文使用手册,可以指导他如何处理中文符号。当外面的中文母语者通过一个小窗口传递给房间里的人一些用中文写的问题时,房间里的人能够依据手册上的指示,找到恰当的中文回答并传递出去。

从外面看,似乎房间里的人能够用中文进行有意义的对话,但实际上,房间里的人并不理解这些中文符号的含义,他仅仅是按照手册的指示在操作符号。

塞尔通过这个实验试图说明,即使一个系统能够通过图灵测试(即在行为上无法与人类区分),这并不意味着系统真的“理解”了它所处理的信息。在这个实验中,房间里的英语说话者就像是一个计算机程序,按照预设的规则操作符号,但他并没有真正理解这些符号的意义。

Acting humanly: The Turing test

 Suggested major components of AI: knowledge, reasoning, language understanding,
learning

Thinking rationally: Laws of Thought

Normative (or prescriptive) rather than descriptive

  1. 规范性的(Normative or prescriptive): 规范性意味着提供了一种应当如何行动的指导或标准。在人工智能中,规范性原则告诉我们智能系统应该如何设计,以便它们的行为符合逻辑和理性的标准。这些原则是理想化的,它们规定了在理想情况下应该遵循的规则。

  2. 描述性的(Descriptive): 描述性原则或规则是关于事物实际如何运作的陈述。在心理学或认知科学中,描述性原则可能会涉及人类实际如何思考、如何犯错以及认知偏差的实际例子

所以人工智能往往是以理想化的理性思考规则为基础,这些规则是规范性的,旨在指导智能系统如何以逻辑和理性的方式行动。

Acting rationally

Rational behaviour: doing the right thing

  1. 理性行为(Rational behaviour): 理性行为指的是个体在特定情境下采取的行动,这些行动旨在实现其目标,并且是基于可用信息的最佳选择。

  2. 做正确的事(doing the right thing): “做正确的事”是指采取那些根据现有信息预期能够最大化目标实现可能性的行动。这里的“正确”并不是指道德上的正确,而是指在实现个人或系统目标方面最有效的行动。

    • 最大化目标实现:理性行为的目标是尽可能地实现或接近目标,而不是随意或偶然地行动。
    • 给定可用信息:理性行为是基于个体在特定时刻所掌握的信息来决定的。如果信息不完整或错误,理性行为可能不会导致最佳结果。

理性行为不一定涉及到思考,eg:眨眼反射    但是思考应该为理性服务

Acting Rationally: Rational agents

 An agent is an entity that perceives and act

智能体是一个感知并行动的实体: 智能体(agent)是能够感知其环境并根据这些感知来采取行动的实体。这可以是一个机器人、一个人、一个软件程序或任何其他能够执行这些功能的系统。

抽象地,智能体是从感知历史到行动的函数: 这是对智能体的一个数学描述,其中:

  • f 代表智能体。
  • P* 表示感知历史的集合,即智能体过去所感知到的一切。
  • A 表示可能的行动集合。
  • f : P* ↦ → A 表示智能体的功能是将一系列感知映射到一个行动上

设计智能体时,我们需要考虑到可用的计算资源。目标是创建一个在现有资源限制下尽可能表现良好的程序。这包括优化算法的效率、减少计算复杂性以及确保智能体在有限的时间内做出合理的决策。

Intelligent Agents

Three key steps of a knowledge-based agent (Craik, 1943):
• the stimulus must be translated into an internal representation
• the representation is manipulated by cognitive processes to derive new internal
representations
• these in turn are translated into action

刺激必须被转化为内部表示 

通过认知过程被操纵以推导出新的内部表示 

新的内部表示随后被转化为行动

 All AI problems require some form of representation  

Sometimes the representation is the output.
E.g., discovering “patterns“

A major part AI is representing the problem space to allow efficient search for the best solution(s)

  1. 所有AI问题都需要某种形式的表示: 表示是AI的核心概念之一,它涉及到如何将现实世界的问题和数据转换成计算机可以处理的形式。这种表示可以是数值、符号、图形、规则集或其他任何形式,其目的是使问题能够在计算机系统中被理解和处理。

  2. 有时候表示就是输出: 在某些AI应用中,表示本身就是最终的目标或输出。例如,在数据挖掘或机器学习任务中,智能系统的目标是发现数据中的“模式”(patterns)。这些模式可以是分类规则、关联规则、聚类结构或任何其他形式的数据表示,它们揭示了数据中的有趣关系或结构。

  3. 表示问题空间是AI的一个重要部分: 在AI中,将问题空间(即问题的所有可能状态和操作)有效地表示出来是至关重要的。良好的表示可以:

    • 降低问题的复杂性,使其更易于处理。
    • 提高搜索问题解决方案的效率。
    • 使得算法能够更快速地找到最优或近似最优的解决方案。
  4. 允许高效搜索最佳解决方案: 表示问题空间的目的是为了能够高效地进行搜索,找到最佳或足够好的解决方案。例如:

    • 在游戏AI中,表示棋盘状态和可能的移动,以便搜索最佳走法。
    • 在优化问题中,表示问题的参数和约束,以便搜索最优解。
    • 在自然语言处理中,表示语言结构和语义,以便搜索最佳的语言理解或生成策略。

What do you do once you have a representation? This requires a goal.

Rational behaviour: choose actions that maximise goal achievement given available information

  • 目标导向:理性行为是有目的的,它以实现特定的目标或目标集合为导向。

  • 信息利用:在做出决策时,理性个体会尽可能地利用所有可用信息,包括环境状态、过去经验、可能的后果等。

  • 预期后果:理性行为考虑了行动的可能后果,并试图选择那些预期会产生最好结果的行动。

  • 最优选择:在所有可行的行动方案中,理性个体会选择那个最有可能帮助他们实现目标的行动。

举例来说,如果一个智能体被编程去寻找房间中的光源,理性行为将是在当前感知到的房间布局中,选择一条路径,这条路径根据智能体的传感器信息和预先设定的目标(找到光源),最有可能引导它到达光源。

Strategy What if your world includes another agent?

 • strategic game play
• auctions
• modelling other agents
• uncertainty: chance and future action

Reasoning can be thought of as constructing an accurate world model

• facts
• observations
• “wet ground”
• logical consequences
• inferences
• “it rained” or “sprinkler”?

Learning

Learning: adapt internal representation so that it is as accurate
as possible Can also adapt our models of other agents.
调整内部表示,使其尽可能准确 也可以调整我们的其他代理模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/872598.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

鸿蒙开发基础知识-页面布局【第四篇】

1.类型转换 2.交互点击事件 3.状态管理 4.forEch渲染和右上角图标 测试案例 Stack 层叠布局一个生肖卡 5. 动画展示图片 6. Swiper 轮播组件的基本使用 图片等比显示 aspectRatio()

TikTok直播为什么要用独立IP

TikTok直播作为一种受欢迎的社交媒体形式,吸引了越来越多的用户和内容创作者。在进行TikTok直播时,选择使用独立IP地址是一种被广泛推荐的做法。本文将探讨为什么在TikTok直播中更推荐使用独立IP,并解释其优势和应用。 独立IP是指一个唯一的互…

sheng的学习笔记-AI-半监督聚类

AI目录:sheng的学习笔记-AI目录-CSDN博客 半监督学习:sheng的学习笔记-AI-半监督学习-CSDN博客 聚类:sheng的学习笔记-AI-聚类(Clustering)-CSDN博客 均值算法:sheng的学习笔记-AI-K均值算法_k均值算法怎么算迭代两次后的最大…

Linux-(系统启动、用户管理)

目录 前言 关机&重启命令 基本介绍 注意细节 用户登录和注销 注意: 用户管理 基本介绍 添加用户 指定/修改密码 删除用户 查询用户信息 切换用户 查看当前用户登录用户 用户组 新增组 删除组 查看所有组 修改用户所属组 创建用户时指定用户…

超声波微型气象仪

超声波微型气象仪是一种便携式的气象观测仪器,可以测量温度、湿度、气压和风速等气象参数。其使用方法如下: 打开仪器电源,并确保仪器已经预热完成。将仪器放置在待测环境中,确保避免直接阳光照射和强风的影响。确定仪器与待测气…

110001安庆巡检_工艺巡检

安庆巡检_工艺巡检 一. 工艺配置二. 点检计划三. 点检任务四. 复检任务1. 复检列表1.1 页面展示 2. 复检任务下发2.1 操作说明2.2 业务说明2.3 表关联说明ps_recheck_task工艺工序参数_复检详情表 3. 复检详情2.1 获取参数点检详情2.2 获取复检详情列表 4. app端复检任务提交4.…

HTML的块级元素与行内元素

在HTML中,元素可以分为两大类:块级元素(block-level elements)和行内元素(inline elements)。这两种类型的元素在网页布局和呈现中扮演着不同的角色。 块级元素(Block-level Elements&#xff…

免费申请aws一年免费服务器使用教程

由于近期要测试一个公网项目,对比之下,选择了aws服务器,免费使用一年。 准备:一个visa信用卡即可,需要一个外网邮箱(我这边使用的hotmail) 注册的步骤不再赘述,切记几个点&#xff0…

智 能 合 约

1. 智能合约的历史 智能合约最初是由 Nick Szabo 在 20 世纪 90 年代后期的一篇名为 Formalizing and Securing Relationships on Public Networks(《公共网络上关系的格式化和安全保护》)的文章中提出的,但是 20 年之后,比特币的发明和区块链…

Qt QGraphicsView实现图片放缩、鼠标拖动移动、鼠标点位置放大缩小_图片查看

QtQGraphicsView实现图片放缩、鼠标拖动移动、鼠标点位置放大缩小 头文件&#xff1a; #ifndef TIMGWIDGET_H #define TIMGWIDGET_H#include <QGraphicsItem> #include <QMainWindow> #include <QObject> #include <QWidget>// class TImgWidget : pu…

【重构获得模式 Refactoring to Patterns】

重构获得模式 Refactoring to Patterns 面向对象设计模式是“好的面向对象设计”&#xff0c;所谓“好的面向对象设计”指的是那些可以满足“应对变化&#xff0c;提高复用”的设计。 现代软件设计的特征是“需求的频繁变化”。设计模式的要点是“寻找变化点&#xff0c;然后…

Opencv中的直方图(1)计算反向投影直方图函数calcBackProject()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 计算直方图的反向投影。 cv::calcBackProject 函数计算直方图的反向投影。也就是说&#xff0c;类似于 calcHist&#xff0c;在每个位置 (x, y)…

12道经典性能测试人员面试题

1.性能测试包含了哪些软件测试&#xff08;至少举出3种&#xff09;&#xff1f; 参考答案&#xff1a;负载测试、压力测试、容量测试。 负载测试&#xff08;Load Testing&#xff09;&#xff1a;负载测试是一种主要为了测试软件系统是否达到需求文档设计的目标&#xff0c…

Spring MVC 八股文

目录 重点 SpringMVC的工作原理 Spring MVC 拦截器 Spring MVC 的拦截器和 Filter 过滤器有什么差别&#xff1f; 基础 什么是SpringMVC SpringMVC的优点 Spring MVC的核心组件 Spring MVC的常用注解由有哪些 Controller 注解有什么用 重点 SpringMVC的工作原理 1、客…

【舍入,取整,取小数,取余数丨Excel 函数】

数学函数 1、Round函数 Roundup函数 Rounddown函数 取整&#xff1a;(Int /Trunc)其他舍入函数&#xff1a; 2、Mod函数用Mod函数提取小数用Mod函数 分奇偶通过身份证号码判断性别 1、Round函数 Roundup函数 Rounddown函数 Round(数字&#xff0c;保留几位小数)&#xff08;四…

Word快速重复上一步操作的三种高效方法

在日常工作、学习和生活中&#xff0c;我们经常需要执行一系列重复性的操作。这些操作可能简单如复制粘贴、调整图片大小&#xff0c;也可能复杂如编辑文档、处理数据等。为了提高效率&#xff0c;掌握快速重复上一步操作的方法显得尤为重要。本文将介绍三种高效的方法&#xf…

Carla自动驾驶仿真十:Carlaviz三维可视化平台搭建

文章目录 前言一、环境准备1、docker安装2、websocket-client安装3、carlaviz代码下载 二、carlaviz使用1、打开carla客户端2、输入启动命令3、进入carlaviz4、修改manual_control.py脚本5、运行manual_control.py脚本6、运行carlaviz官方脚本&#xff08;推荐&#xff09; 前言…

【2024最新】Python入门教程(非常详细)从零基础入门到精通,看完这一篇就够了!

前言 本文罗列了了python零基础入门到精通的详细教程&#xff0c;内容均以知识目录的形式展开。 第一章&#xff1a;python基础之markdown Typora软件下载Typora基本使用Typora补充说明编程与编程语言计算机的本质计算机五大组成部分计算机三大核心硬件操作系统 第二章&…

【计算机网络】浏览器输入访问某网址时,后台流程是什么

在访问网址时&#xff0c;后台的具体流程可以因不同的网站、服务器和应用架构而异。 实际过程中可能还涉及更多的细节和步骤&#xff0c;如缓存处理、重定向、负载均衡等。 此外&#xff0c;不同的网站和应用架构可能会有不同的实现方式和优化策略。 部分特定网站或应用&#x…

RK3588开发板利用udp发送和接收数据

目录 1 send.cpp 2 receive.cpp 3 编译运行 4 测试 1 send.cpp #include <iostream> #include <string> #include <cstring> #include <unistd.h> #include <sys/socket.h> #include <netinet/in.h> #include <arpa/inet.h> //…