如何通过观测云实现AIOps突破?

在当今信息技术迅猛发展的浪潮中,企业正置身于一个日益复杂化的 IT 环境,并面临着数据量的爆炸性增长。智能运维(AIOps),作为 IT 运维管理领域的革新者,融合了大数据和机器学习技术,致力于对 IT 运维流程进行深度优化和智能化自动化管理。在这一变革的背景下,构建一个高效的监控观测平台——观测云,已成为智能运维成功不可或缺的基石。本文将深入探讨为何构建观测云是实现智能运维的必备条件,并分析其三大核心原因。

观测云是构建智能运维体系的基石,包含三大核心要素

数据采集与治理的规范化

首先,观测云的诞生,为数据采集领域带来了一场革命。它通过统一的数据采集行为,彻底规范了数据治理的流程。在传统 IT 运维中,数据采集的分散化和复杂性常常导致数据一致性和质量难以保障。观测云的集中化和标准化采集机制,不仅简化了运维过程,更确保了数据的完整性和准确性。

这种规范化的数据采集,不仅提升了数据质量,更为数据分析和决策提供了可靠的基础。运维团队现在可以更加自信地依赖数据的准确性,做出更加精准和高效的运维决策。

简化数据查询方式

其次,观测云的另一大优势在于它统一了数据查询的方法。在缺乏集中化平台的旧模式下,运维团队不得不在多个数据源之间穿梭,进行繁琐的数据检索和整合工作,这不仅效率极低,而且极易引发错误。观测云通过提供一个集中的数据查询接口,让运维团队能够在单一的平台上轻松查询和分析所有相关数据。

这种统一的数据查询机制,极大地提升了运维的效率和便捷性。算法工程师现在可以将宝贵的时间从繁琐的数据整合和查询任务中解放出来,转而投入到算法的深入优化和创新之中。这不仅提高了工程师的工作价值,也使他们能够避免陷入「SQL 工程师」的尴尬局面,专注于更高层次的技术挑战和创新。

例如,通过以下语句,可统计 Nginx 日志中状态码为 400 的日志数。

提供全面的数据视角

最后,观测云以其统一而全面的视角,为智能运维提供了数据的深度洞察。在智能运维的领域,算法的效能与数据的质量和广度紧密相连。观测云通过融合各类数据源,构建了一个全方位的数据视图,这使得算法能够基于更加丰富和多元的数据进行深入的分析和学习。

结合先进的大数据分析技术,观测云赋予了运维团队深入洞察系统运行状态的能力,能够预测潜在的问题,并实现故障排除与系统优化的自动化。这种全面的数据视角和强大的分析能力,正是智能运维释放其真正价值的关键所在。

数据存储及分析能力是关键

在智能运维的广阔天地中,监控观测平台承载着处理庞大数据量的重任,特别是在云原生的生态下,服务的激增带来了指标、日志和追踪数据的海量累积。面对这一挑战,观测云的底层数仓展现出其卓越的能力,不仅能够高效地存储、索引和查询庞大的数据集,更在成本控制上展现出深思熟虑的策略。通过实施冷温热数据的分层存储机制,观测云在保障查询性能的同时,也大幅度降低了数据存储的经济负担,为企业的智能运维之路铺就了坚实的基石。

在监控观测平台的构建中,数据源的多样性是其核心特点之一。面对来自不同服务、应用程序和系统的多样化数据,观测云的底层数据仓库采用了创新的 Schemaless 特性,以实现对各种结构数据的包容性接纳。这种无模式的特性赋予了平台无与伦比的灵活性,使得在监控数据源发生变动时,观测云能够轻松地进行适应,无需进行耗时的开发和维护工作。更重要的是,Schemaless 特性简化了新数据源或数据类型的集成流程,无需进行复杂的模式设计和更新,从而显著提升了平台的灵活性和适应性。观测云的这一特性,为处理和分析来自不同源且具有不同结构的数据提供了强大的支持,确保了智能运维的高效性和前瞻性。

如图所示,Schemaless 特性可以允许用户随意自定义扩展字段,而不需要预先定义数据模型,可以减少大量的配置维护工作。数据之间的关联通过“字段广播”的模式实现,例如根据日志中的 host 字段和主机的监控指标关联,可以将 MySQL 的链路同 MySQL 监控指标关联,这种灵活和可扩展的模式贯彻至观测云整个可观测性数据体系中,能够动态的建立可观测性数据之间的关系,从而达到全域可观测性数据动态关联的效果。

让智能运维真正为业务及研发运维过程赋能

观测云通过其对可观测性数据的集中管理和统一查询机制,为企业打造了一个全面的智能运维环境。这一环境不仅提供了深入的数据视角,并且让技术本质回归,为企业用户提供实质性的价值。例如,它能够通过分析日志数据来监测并预警用户领券行为的异常激增,预防潜在的业务风险;通过监控主机内存使用趋势来预测和诊断内存泄漏问题;以及通过识别在 Kubernetes 环境中频繁重启的 Pod 来提高系统的稳定性。此外,利用观测云 DataFlux Func 可编程平台,用户能够定制化智能巡检流程,将算法应用于业务研发的各个环节,从而实现运维工作的智能化和自动化,进一步提升业务研发的效率和质量。

如果想对观测云的智能监控原理进一步了解,可参考《深度解析观测云智能监控的核心设计原理》。

总结

总结而言,观测云的构建不仅是智能运维不可或缺的基石,更是其核心驱动力。它通过规范化的数据采集策略、简化的数据查询机制,以及全面的数据分析视角,为智能运维的顺畅实施提供了坚实的支撑。随着技术的飞速发展和企业需求的持续增长,监控观测平台在IT运维的未来将扮演着越来越核心的角色,其影响力和价值将不断增强。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/871930.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

CV每日论文--2024.7.25

1、Diffusion Models for Monocular Depth Estimation: Overcoming Challenging Conditions 中文标题:单目深度估计的扩散模型:克服具有挑战性的条件 简介:本文提出了一种新颖的方法,旨在解决单张图像深度估计任务中具有挑战性的、超出分布范…

有关应用层面试题有关库的思维导体

面试题目: TCP通信中3次握手和四次挥手? 答: 第一次握手:客户端发送SYN包(SYN1, seq0)给服务器,并进入SYN_SENT状态,等待服务器返回确认包。第二次握手:服务器接收到S…

LMDeploy 量化部署实践闯关任务

一、LMDeploy量化介绍 1.LMDeploy部署模型的优势 LMDeploy实现了高效的推理、可靠的量化、卓越的兼容性、便捷的服务以及有状态的推理。 相比于vllm具有领先的推理性能: LMDeploy也提供了大模型量化能力:主要包括KV Cache量化和模型权重量化。 LMDepl…

二叉树的经典OJ题

前言 Helllo,今天,博主将要带领大家来深度解析几道经典的二叉树OJ题,来巩固我们前面学过的二叉树知识,我们在进行二叉树练习的时候,还是要对二叉树有较为深入的认识,所以新来的小伙伴,博主强烈推荐可以先去…

MyBatis[进阶]

大纲: 动态SQL查询 留言板 1. 动态SQL 1.1 <if> 我们都注册过一些信息,有的信息是非必填项,改如何实现呢? 这个时候就需要使⽤动态标签来判断了 ⽐如添加的时候性别gender为⾮必填字段&#xff0c;具体实现如 下&#xff1a; 注解: 如果性别为空: 如果性别不为空:…

HDU1159——通用子序列,HDU1160——FatMouse的速度、HDU1165——艾迪的研究 II

HDU1159——通用子序列 题目描述 问题 - 1159 (hdu.edu.cn) 问题描述 给定序列的子序列是给定的序列&#xff0c;其中遗漏了一些元素&#xff08;可能没有&#xff09;。给定一个序列 X <x1&#xff0c; x2&#xff0c; ...&#xff0c; xm>如果存在一个严格递增的 X …

「字符串」详解AC自动机并实现对应的功能 / 手撕数据结构(C++)

目录 前置知识 概述 核心概念&#xff1a;fail指针 作用 构建 图示 Code 成员变量 创建销毁 添加词库 文本扫描 复杂度 Code 前置知识 在此前&#xff0c;你应该首先了解trie树&#xff08;字典树&#xff09;的概念&#xff1a; 「字符串」详解Trie&#xff0…

C语言贪吃蛇之BUG满天飞

C语言贪吃蛇之BUG满天飞 今天无意间翻到了大一用C语言写的贪吃蛇&#xff0c;竟然还标注着BUG满天飞&#xff0c;留存一下做个纪念&#xff0c;可能以后就找不到了 /* 此程序 --> 贪吃蛇3.0 Sur_流沐 当前版本&#xff1a; Bug满天飞 */ #include<stdio.h> #includ…

Chat App 项目之解析(二)

Chat App 项目介绍与解析&#xff08;一&#xff09;-CSDN博客文章浏览阅读76次。Chat App 是一个实时聊天应用程序&#xff0c;旨在为用户提供一个简单、直观的聊天平台。该应用程序不仅支持普通用户的注册和登录&#xff0c;还提供了管理员登录功能&#xff0c;以便管理员可以…

xlsx表格-A列的值需要从C列中匹配到然后输出C列旁边D列的值,怎么写公式?

公式&#xff1a; IFERROR(VLOOKUP(A1, C:D, 2, FALSE), "") 解释&#xff1a; 在VLOOKUP函数中&#xff0c;2表示要返回的列的索引。具体来说&#xff0c;VLOOKUP函数的语法如下&#xff1a; VLOOKUP(lookup_value, table_array, col_index_num, [range_lookup])…

微服务的保护

一、雪崩问题及解决方案 1.雪崩问题 微服务之间&#xff0c;一个微服务依赖多个其他的微服务。当一个微服务A依赖的一个微服务B出错时&#xff0c;微服务A会被阻塞&#xff0c;但其他不依赖于B的微服务不会受影响。 当有多个微服务依赖于B时&#xff0c;服务器支持的线程和并…

入门 - Vue中使用axios原理分析及解决前端跨域问题

1. 什么是Axios&#xff1f; Axios&#xff08;ajax i/o system&#xff09;&#xff0c;是Vue创建者主推的请求发送方式&#xff0c;因其简单的配置与良好的性能被前端爱好者所喜爱。众所周知&#xff0c;在进行网页设计时经常需要从后端拿数据&#xff0c;在Web应用初期会将…

python之matplotlib (1 介绍及基本用法)

介绍 matplotlib是Python中的一个绘图库&#xff0c;它提供了一个类似于 MATLAB 的绘图系统。使用matplotlib你可以生成图表、直方图、功率谱、条形图、错误图、散点图等。matplotlib广泛用于数据可视化领域&#xff0c;是 Python 中最著名的绘图库之一。 同样matplotlib的安…

golang实现一个简单的rpc框架

前言 RPC在分布式系统中经常使用&#xff0c;这里写一个简单的demo实践一下。 code 先生成 go.mod 文件 go mod init rpc-try01定义方法 package model// Args 是 RPC 方法的参数结构体 type Args struct {A, B int }// Arith 定义了一个简单的算术服务 type Arith struct{…

:class的用法及应用

参考小满视频 在同一个标签中&#xff0c;class只能有一个&#xff0c;:class也只能有一个 :class的用法 1. :class “非响应式的变量”&#xff08;一般不使用&#xff0c;和写死了一样&#xff09; const a "style1" <span :class"a"></spa…

python-逆序数(赛氪OJ)

[题目描述] 在一个排列中&#xff0c;如果一对数的前后位置与大小顺序相反&#xff0c;即前面的数大于后面的数&#xff0c;那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。比如一个元素个数为 4 的数列&#xff0c;其元素为 2,4,3,1&#xff0c;则 (2,…

Stable Diffusion 使用详解(8)--- layer diffsuion

背景 layer diffusion 重点在 layer&#xff0c;顾名思义&#xff0c;就是分图层的概念&#xff0c;用过ps 的朋友再熟悉不过了。没使用过的&#xff0c;也没关系&#xff0c;其实很简单&#xff0c;本质就是各图层自身的编辑不会影响其他图层&#xff0c;这好比OS中运行了很多…

使用 Python构建 Windows 进程管理器应用程序

在这篇博客中&#xff0c;我们将探讨如何使用 wxPython 构建一个简单的 Windows 进程管理器应用程序。这个应用程序允许用户列出当前系统上的所有进程&#xff0c;选择和终止进程&#xff0c;并将特定进程保存到文件中以供将来加载。 C:\pythoncode\new\manageprocess.py 全部…

RabbitMQ实现多线程处理接收消息

前言&#xff1a;在使用RabbitListener注解来指定消费方法的时候&#xff0c;默认情况是单线程去监听队列&#xff0c;但是这个如果在高并发的场景中会出现很多个任务&#xff0c;但是每次只消费一个消息&#xff0c;就会很缓慢。单线程处理消息容易引起消息处理缓慢&#xff0…

推荐算法实战-五-召回(上)

一、传统召回算法 &#xff08;一&#xff09;基于物料属性的倒排索引 在离线时&#xff0c;将具有相同属性的物料集合起来&#xff0c;根据一些后验统计指标将物料排序。 当一个用户在线交互发出请求后&#xff0c;提取用户的兴趣标签&#xff0c;根据标签检索相应物料集合…