6、秒杀优化
6.1 秒杀优化-异步秒杀思路
- 我们先来回顾一下下单流程
- 当用户发起请求,此时会先请求Nginx,Nginx反向代理到Tomcat,而Tomcat中的程序,会进行串行操作,分为如下几个步骤
- 查询优惠券
- 判断秒杀库存是否足够
- 查询订单
- 校验是否一人一单
- 扣减库存
- 创建订单
- 在这六个步骤中,有很多操作都是要去操作数据库的,而且还是一个线程串行执行,这样就会导致我们的程序执行很慢,所以我们需要异步程序执行,那么如何加速呢?
优化方案:
我们将耗时较短的逻辑判断放到Redis中,例如:库存是否充足,是否一人一单这样的操作,只要满足这两条操作,那我们是一定可以下单成功的,不用等数据真的写进数据库,我们直接告诉用户下单成功就好了。然后后台再开一个线程,后台线程再去慢慢执行队列里的消息,这样我们就能很快的完成下单业务。
优化方案:我们将耗时比较短的逻辑判断放入到redis中,比如是否库存足够,比如是否一人一单,这样的操作,只要这种逻辑可以完成,就意味着我们是一定可以下单完成的,我们只需要进行快速的逻辑判断,根本就不用等下单逻辑走完,我们直接给用户返回成功, 再在后台开一个线程,后台线程慢慢的去执行queue里边的消息,这样程序不就超级快了吗?而且也不用担心线程池消耗殆尽的问题,因为这里我们的程序中并没有手动使用任何线程池,当然这里边有两个难点
第一个难点是我们怎么在redis中去快速校验一人一单,还有库存判断
第二个难点是由于我们校验和tomct下单是两个线程,那么我们如何知道到底哪个单他最后是否成功,或者是下单完成,为了完成这件事我们在redis操作完之后,我们会将一些信息返回给前端,同时也会把这些信息丢到异步queue中去,后续操作中,可以通过这个id来查询我们tomcat中的下单逻辑是否完成了。
- 但是这里还存在两个难点
- 我们怎么在Redis中快速校验是否一人一单,还有库存判断
- 我们校验一人一单和将下单数据写入数据库,这是两个线程,我们怎么知道下单是否完成。
- 我们需要将一些信息返回给前端,同时也将这些信息丢到异步queue中去,后续操作中,可以通过这个id来查询下单逻辑是否完成
- 我们现在来看整体思路:当用户下单之后,判断库存是否充足,只需要取Redis中根据key找对应的value是否大于0即可,如果不充足,则直接结束。如果充足,则在Redis中判断用户是否可以下单,如果set集合中没有该用户的下单数据,则可以下单,并将userId和优惠券存入到Redis中,并且返回0,整个过程需要保证是原子性的,所以我们要用Lua来操作,同时由于我们需要在Redis中查询优惠券信息,所以在我们新增秒杀优惠券的同时,需要将优惠券信息保存到Redis中
- 完成以上逻辑判断时,我们只需要判断当前Redis中的返回值是否为0,如果是0,则表示可以下单,将信息保存到queue中去,然后返回,开一个线程来异步下单,其阿奴单可以通过返回订单的id来判断是否下单成功
6.2 秒杀优化-Redis完成秒杀资格判断
需求:
-
新增秒杀优惠券的同时,将优惠券信息保存到Redis中
-
基于Lua脚本,判断秒杀库存、一人一单,决定用户是否抢购成功
-
如果抢购成功,将优惠券id和用户id封装后存入阻塞队列
-
开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能
VoucherServiceImpl
@Override
@Transactional
public void addSeckillVoucher(Voucher voucher) {
// 保存优惠券
save(voucher);
// 保存秒杀信息
SeckillVoucher seckillVoucher = new SeckillVoucher();
seckillVoucher.setVoucherId(voucher.getId());
seckillVoucher.setStock(voucher.getStock());
seckillVoucher.setBeginTime(voucher.getBeginTime());
seckillVoucher.setEndTime(voucher.getEndTime());
seckillVoucherService.save(seckillVoucher);
// 保存秒杀库存到Redis中
//SECKILL_STOCK_KEY 这个变量定义在RedisConstans中
//private static final String SECKILL_STOCK_KEY ="seckill:stock:"
stringRedisTemplate.opsForValue().set(SECKILL_STOCK_KEY + voucher.getId(), voucher.getStock().toString());
}
-
使用PostMan发送请求,添加优惠券
请求路径:http://localhost:8080/api/voucher/seckill
请求方式:POST -
{ "shopId":1, "title":"9999元代金券", "subTitle":"365*24小时可用", "rules":"全场通用\\nApex猎杀无需预约", "payValue":1000, "actualValue":999900, "type":1, "stock":100, "beginTime":"2022-01-01T00:00:00", "endTime":"2022-12-31T23:59:59" }
-
添加成功后,数据库中和Redis中都能看到优惠券信息
-
步骤二:
编写Lua脚本
lua的字符串拼接使用..
,字符串转数字是tonumber()
-- 1.参数列表
-- 1.1.优惠券id
local voucherId = ARGV[1]
-- 1.2.用户id
local userId = ARGV[2]
-- 1.3.订单id
local orderId = ARGV[3]
-- 2.数据key
-- 2.1.库存key
local stockKey = 'seckill:stock:' .. voucherId
-- 2.2.订单key
local orderKey = 'seckill:order:' .. voucherId
-- 3.脚本业务
-- 3.1.判断库存是否充足 get stockKey
if(tonumber(redis.call('get', stockKey)) <= 0) then
-- 3.2.库存不足,返回1
return 1
end
-- 3.2.判断用户是否下单 SISMEMBER orderKey userId
if(redis.call('sismember', orderKey, userId) == 1) then
-- 3.3.存在,说明是重复下单,返回2
return 2
end
-- 3.4.扣库存 incrby stockKey -1
redis.call('incrby', stockKey, -1)
-- 3.5.下单(保存用户)sadd orderKey userId
redis.call('sadd', orderKey, userId)
return 0
- 修改业务逻辑
VoucherOrderServiceImpl
private static final DefaultRedisScript<Long> SECKILL_SCRIPT;
static {
SECKILL_SCRIPT =new DefaultRedisScript<>();
SECKILL_SCRIPT,setLocation(new classPathResource("seckill.lua"));
SECKILL_SCRIPT.setResultType(Long.class);
}
@Override
public Result seckillVoucher(Long voucherId) {
//获取用户
Long userId = UserHolder.getUser().getId();
//生成订单ID
long orderId = redisIdWorker.nextId("order");
// 1.执行lua脚本
Long result = stringRedisTemplate.execute(
SECKILL_SCRIPT,
Collections.emptyList(),
voucherId.toString(), userId.toString(), String.valueOf(orderId)
);
int r = result.intValue();
// 2.判断结果是否为0
if (r != 0) {
// 2.1.不为0 ,代表没有购买资格
return Result.fail(r == 1 ? "库存不足" : "不能重复下单");
}
//TODO 保存阻塞队列
// 3.返回订单id
return Result.ok(orderId);
}
6.3 秒杀优化-基于阻塞队列实现秒杀优化
- 修改下单的操作,我们在下单时,是通过Lua表达式去原子执行判断逻辑,如果判断结果不为0,返回错误信息,如果判断结果为0,则将下单的逻辑保存到队列中去,然后异步执行
- 需求
- 如果秒杀成功,则将优惠券id和用户id封装后存入阻塞队列
- 开启线程任务,不断从阻塞队列中获取信息,实现异步下单功能
步骤一:
创建阻塞队列
阻塞队列有一个特点:当一个线程尝试从阻塞队列里获取元素的时候,如果没有元素,那么该线程就会被阻塞,直到队列中有元素,才会被唤醒,并去获取元素
阻塞队列的创建需要指定一个大小
private final BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024 * 1024);
- 那么把优惠券id和用户id封装后存入阻塞队列
@Override
public Result seckillVoucher(Long voucherId) {
Long result = stringRedisTemplate.execute(SECKILL_SCRIPT,
Collections.emptyList(), voucherId.toString(),
UserHolder.getUser().getId().toString());
if (result.intValue() != 0) {
return Result.fail(result.intValue() == 1 ? "库存不足" : "不能重复下单");
}
long orderId = redisIdWorker.nextId("order");
//封装到voucherOrder中
VoucherOrder voucherOrder = new VoucherOrder();
voucherOrder.setVoucherId(voucherId);
voucherOrder.setUserId(UserHolder.getUser().getId());
voucherOrder.setId(orderId);
//加入到阻塞队列
orderTasks.add(voucherOrder);
return Result.ok(orderId);
}
- 步骤二
实现异步下单功能
- 先创建一个线程池
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
- 创建线程任务,秒杀业务需要在类初始化之后,就立即执行,所以这里需要用到
@PostConstruct
注解
@PostConstruct
private void init() {
SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
private class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
//1. 获取队列中的订单信息
VoucherOrder voucherOrder = orderTasks.take();
//2. 创建订单
handleVoucherOrder(voucherOrder);
} catch (Exception e) {
log.error("订单处理异常", e);
}
}
}
}
- 编写创建订单的业务逻辑
private IVoucherOrderService proxy;
private void handleVoucherOrder(VoucherOrder voucherOrder) {
//1. 获取用户
Long userId = voucherOrder.getUserId();
//2. 创建锁对象,作为兜底方案
RLock redisLock = redissonClient.getLock("order:" + userId);
//3. 获取锁
boolean isLock = redisLock.tryLock();
//4. 判断是否获取锁成功
if (!isLock) {
log.error("不允许重复下单!");
return;
}
try {
//5. 使用代理对象,由于这里是另外一个线程,
proxy.createVoucherOrder(voucherOrder);
} finally {
redisLock.unlock();
}
}
- 查看AopContext源码,它的获取代理对象也是通过ThreadLocal进行获取的,由于我们这里是异步下单,和主线程不是一个线程,所以不能获取成功
private static final ThreadLocal<Object> currentProxy = new NamedThreadLocal("Current AOP proxy");
- 但是我们可以将proxy放在成员变量的位置,然后在主线程中获取代理对象
@Override
public Result seckillVoucher(Long voucherId) {
Long result = stringRedisTemplate.execute(SECKILL_SCRIPT,
Collections.emptyList(), voucherId.toString(),
UserHolder.getUser().getId().toString());
if (result.intValue() != 0) {
return Result.fail(result.intValue() == 1 ? "库存不足" : "不能重复下单");
}
long orderId = redisIdWorker.nextId("order");
//封装到voucherOrder中
VoucherOrder voucherOrder = new VoucherOrder();
voucherOrder.setVoucherId(voucherId);
voucherOrder.setUserId(UserHolder.getUser().getId());
voucherOrder.setId(orderId);
//加入到阻塞队列
orderTasks.add(voucherOrder);
//主线程获取代理对象
proxy = (IVoucherOrderService) AopContext.currentProxy();
return Result.ok(orderId);
}
@Transactional
public void createVoucherOrder(VoucherOrder voucherOrder) {
// 一人一单逻辑
Long userId = voucherOrder.getUserId();
Long voucherId = voucherOrder.getVoucherId();
synchronized (userId.toString().intern()) {
int count = query().eq("voucher_id", voucherId).eq("user_id", userId).count();
if (count > 0) {
log.error("你已经抢过优惠券了哦");
return;
}
//5. 扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1")
.eq("voucher_id", voucherId)
.gt("stock", 0)
.update();
if (!success) {
log.error("库存不足");
}
//7. 将订单数据保存到表中
save(voucherOrder);
}
}
- 完整代码如下
package com.hmdp.service.impl;
import com.hmdp.dto.Result;
import com.hmdp.entity.VoucherOrder;
import com.hmdp.mapper.VoucherOrderMapper;
import com.hmdp.service.ISeckillVoucherService;
import com.hmdp.service.IVoucherOrderService;
import com.baomidou.mybatisplus.extension.service.impl.ServiceImpl;
import com.hmdp.utils.RedisIdWorker;
import com.hmdp.utils.UserHolder;
import lombok.extern.slf4j.Slf4j;
import org.redisson.api.RLock;
import org.redisson.api.RedissonClient;
import org.springframework.aop.framework.AopContext;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.core.io.ClassPathResource;
import org.springframework.data.redis.core.StringRedisTemplate;
import org.springframework.data.redis.core.script.DefaultRedisScript;
import org.springframework.stereotype.Service;
import org.springframework.transaction.annotation.Transactional;
import javax.annotation.PostConstruct;
import javax.annotation.Resource;
import java.util.Collections;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.BlockingQueue;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
/**
* <p>
* 服务实现类
* </p>
*
* @author Kyle
* @since 2022-10-22
*/
@Service
@Slf4j
public class VoucherOrderServiceImpl extends ServiceImpl<VoucherOrderMapper, VoucherOrder> implements IVoucherOrderService {
@Autowired
private ISeckillVoucherService seckillVoucherService;
@Autowired
private RedisIdWorker redisIdWorker;
@Resource
private StringRedisTemplate stringRedisTemplate;
@Resource
private RedissonClient redissonClient;
private IVoucherOrderService proxy;
private static final DefaultRedisScript<Long> SECKILL_SCRIPT;
static {
SECKILL_SCRIPT = new DefaultRedisScript();
SECKILL_SCRIPT.setLocation(new ClassPathResource("seckill.lua"));
SECKILL_SCRIPT.setResultType(Long.class);
}
private static final ExecutorService SECKILL_ORDER_EXECUTOR = Executors.newSingleThreadExecutor();
@PostConstruct
private void init() {
SECKILL_ORDER_EXECUTOR.submit(new VoucherOrderHandler());
}
private final BlockingQueue<VoucherOrder> orderTasks = new ArrayBlockingQueue<>(1024 * 1024);
private void handleVoucherOrder(VoucherOrder voucherOrder) {
//1. 获取用户
Long userId = voucherOrder.getUserId();
//2. 创建锁对象,作为兜底方案
RLock redisLock = redissonClient.getLock("order:" + userId);
//3. 获取锁
boolean isLock = redisLock.tryLock();
//4. 判断是否获取锁成功
if (!isLock) {
log.error("不允许重复下单!");
return;
}
try {
//5. 使用代理对象,由于这里是另外一个线程,
proxy.createVoucherOrder(voucherOrder);
} finally {
redisLock.unlock();
}
}
private class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
//1. 获取队列中的订单信息
VoucherOrder voucherOrder = orderTasks.take();
//2. 创建订单
handleVoucherOrder(voucherOrder);
} catch (Exception e) {
log.error("订单处理异常", e);
}
}
}
}
@Override
public Result seckillVoucher(Long voucherId) {
Long result = stringRedisTemplate.execute(SECKILL_SCRIPT,
Collections.emptyList(), voucherId.toString(),
UserHolder.getUser().getId().toString());
if (result.intValue() != 0) {
return Result.fail(result.intValue() == 1 ? "库存不足" : "不能重复下单");
}
long orderId = redisIdWorker.nextId("order");
//封装到voucherOrder中
VoucherOrder voucherOrder = new VoucherOrder();
voucherOrder.setVoucherId(voucherId);
voucherOrder.setUserId(UserHolder.getUser().getId());
voucherOrder.setId(orderId);
//加入到阻塞队列
orderTasks.add(voucherOrder);
//主线程获取代理对象
proxy = (IVoucherOrderService) AopContext.currentProxy();
return Result.ok(orderId);
}
@Transactional
public void createVoucherOrder(VoucherOrder voucherOrder) {
// 一人一单逻辑
Long userId = voucherOrder.getUserId();
Long voucherId = voucherOrder.getVoucherId();
synchronized (userId.toString().intern()) {
int count = query().eq("voucher_id", voucherId).eq("user_id", userId).count();
if (count > 0) {
log.error("你已经抢过优惠券了哦");
return;
}
//5. 扣减库存
boolean success = seckillVoucherService.update()
.setSql("stock = stock - 1")
.eq("voucher_id", voucherId)
.gt("stock", 0)
.update();
if (!success) {
log.error("库存不足");
}
//7. 将订单数据保存到表中
save(voucherOrder);
}
}
}
小结
小总结:
秒杀业务的优化思路是什么?
- 先利用Redis完成库存余量、一人一单判断,完成抢单业务
- 再将下单业务放入阻塞队列,利用独立线程异步下单
- 基于阻塞队列的异步秒杀存在哪些问题?
- 内存限制问题:
- 我们现在使用的是JDK里的阻塞队列,它使用的是JVM的内存,如果在高并发的条件下,无数的订单都会放在阻塞队列里,可能就会造成内存溢出,所以我们在创建阻塞队列时,设置了一个长度,但是如果真的存满了,再有新的订单来往里塞,那就塞不进去了,存在内存限制问题
- 数据安全问题:
- 经典服务器宕机了,用户明明下单了,但是数据库里没看到
- 内存限制问题:
7、Redis消息队列
7.1 Redis消息队列-认识消息队列
什么是消息队列:字面意思就是存放消息的队列。最简单的消息队列模型包括3个角色:
- 消息队列:存储和管理消息,也被称为消息代理(Message Broker)
- 生产者:发送消息到消息队列
- 消费者:从消息队列获取消息并处理消息
- 使用队列的好处在于
解耦
:举个例子,快递员(生产者)把快递放到驿站/快递柜里去(Message Queue)去,我们(消费者)从快递柜/驿站去拿快递,这就是一个异步,如果耦合,那么快递员必须亲自上楼把快递递到你手里,服务当然好,但是万一我不在家,快递员就得一直等我,浪费了快递员的时间。所以解耦还是非常有必要的 - 那么在这种场景下我们的秒杀就变成了:在我们下单之后,利用Redis去进行校验下单的结果,然后在通过队列把消息发送出去,然后在启动一个线程去拿到这个消息,完成解耦,同时也加快我们的响应速度
- 这里我们可以直接使用一些现成的(MQ)消息队列,如kafka,rabbitmq等,但是如果没有安装MQ,我们也可以使用Redis提供的MQ方案(学完Redis我就去学微服务)
7.2 Redis消息队列-基于List实现消息队列
基于List结构模拟消息队列
消息队列(Message Queue),字面意思就是存放消息的队列。而Redis的list数据结构是一个双向链表,很容易模拟出队列效果。
队列是入口和出口不在一边,因此我们可以利用:LPUSH 结合 RPOP、或者 RPUSH 结合 LPOP来实现。
不过要注意的是,当队列中没有消息时RPOP或LPOP操作会返回null,并不像JVM的阻塞队列那样会阻塞并等待消息。因此这里应该使用BRPOP或者BLPOP来实现阻塞效果。
基于List的消息队列有哪些优缺点?
优点:
- 利用Redis存储,不受限于JVM内存上限
- 基于Redis的持久化机制,数据安全性有保证
- 可以满足消息有序性
缺点:
- 无法避免消息丢失
- 只支持单消费者
7.3 Redis消息队列-基于PubSub的消息队列
PubSub(发布订阅)是Redis2.0版本引入的消息传递模型。顾名思义,消费者可以订阅一个或多个channel,生产者向对应channel发送消息后,所有订阅者都能收到相关消息。
SUBSCRIBE channel [channel] :订阅一个或多个频道
PUBLISH channel msg :向一个频道发送消息
PSUBSCRIBE pattern[pattern] :订阅与pattern格式匹配的所有频道
Subscribes the client to the given patterns.
Supported glob-style patterns:
- h?flo subscribes to hello, hallo and hxllo
- h*llo subscribes to hllo and heeeello
- h[ae]llo subscribes to hello and hallo, but not hillo
Use \ to escape special characters if you want to match them verbatim.
- 基于PubSub的消息队列有哪些优缺点
- 优点:
- 采用发布订阅模型,支持多生产,多消费
- 缺点:
- 不支持数据持久化
- 无法避免消息丢失(如果向频道发送了消息,却没有人订阅该频道,那发送的这条消息就丢失了)
- 消息堆积有上限,超出时数据丢失(消费者拿到数据的时候处理的太慢,而发送消息发的太快)
- 优点:
7.4 Redis消息队列-基于Stream的消息队列
Stream 是 Redis 5.0 引入的一种新数据类型,可以实现一个功能非常完善的消息队列。
发送消息的命令:
例如:
读取消息的方式之一:XREAD
例如,使用XREAD读取第一个消息:
XREAD阻塞方式,读取最新的消 息:
在业务开发中,我们可以循环的调用XREAD阻塞方式来查询最新消息,从而实现持续监听队列的效果,伪代码如下
注意:当我们指定起始ID为$时,代表读取最新的消息,如果我们处理一条消息的过程中,又有超过1条以上的消息到达队列,则下次获取时也只能获取到最新的一条,会出现漏读消息的问题
STREAM类型消息队列的XREAD命令特点:
- 消息可回溯
- 一个消息可以被多个消费者读取
- 可以阻塞读取
- 有消息漏读的风险
7.5 Redis消息队列-基于Stream的消息队列-消费者组
消费者组(Consumer Group):将多个消费者划分到一个组中,监听同一个队列。具备下列特点:
创建消费者组:
其它常见命令:
- key
- 队列名称
- groupName
- 消费者组名称
- ID
- 起始ID标识,$代表队列中的最后一个消息,0代表队列中的第一个消息
- MKSTREAM
- 队列不存在时自动创建队列
删除指定的消费者组
XGROUP DESTORY key groupName
给指定的消费者组添加消费者
XGROUP CREATECONSUMER key groupname consumername
删除消费者组中的指定消费者
XGROUP DELCONSUMER key groupname consumername
从消费者组读取消息:
XREADGROUP GROUP group consumer [COUNT count] [BLOCK milliseconds] [NOACK] STREAMS key [key ...] ID [ID ...]
- group
- 消费者组名称
- consumer
- 消费者名,如果消费者不存在,会自动创建一个消费者
- count
- 本次查询的最大数量
- BLOCK milliseconds
- 当前没有消息时的最大等待时间
- NOACK
- 无需手动ACK,获取到消息后自动确认(一般不用,我们都是手动确认)
- STREAMS key
- 指定队列名称
- ID
- 获取消息的起始ID
>
:从下一个未消费的消息开始(pending-list中)- 其他:根据指定id从pending-list中获取已消费但未确认的消息,例如0,是从pending-list中的第一个消息开始
- 获取消息的起始ID
消费者监听消息的基本思路:
while(true){
// 尝试监听队列,使用阻塞模式,最大等待时长为2000ms
Object msg = redis.call("XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >")
if(msg == null){
// 没监听到消息,重试
continue;
}
try{
//处理消息,完成后要手动确认ACK,ACK代码在handleMessage中编写
handleMessage(msg);
} catch(Exception e){
while(true){
//0表示从pending-list中的第一个消息开始,如果前面都ACK了,那么这里就不会监听到消息
Object msg = redis.call("XREADGROUP GROUP g1 c1 COUNT 1 STREAMS s1 0");
if(msg == null){
//null表示没有异常消息,所有消息均已确认,结束循环
break;
}
try{
//说明有异常消息,再次处理
handleMessage(msg);
} catch(Exception e){
//再次出现异常,记录日志,继续循环
log.error("..");
continue;
}
}
}
}
STREAM类型消息队列的XREADGROUP命令特点:
- 消息可回溯
- 可以多消费者争抢消息,加快消费速度
- 可以阻塞读取
- 没有消息漏读的风险
- 有消息确认机制,保证消息至少被消费一次
最后我们来个小对比
7.6 基于Redis的Stream结构作为消息队列,实现异步秒杀下单
需求:
- 创建一个Stream类型的消息队列,名为stream.orders
- 修改之前的秒杀下单Lua脚本,在认定有抢购资格后,直接向stream.orders中添加消息,内容包含voucherId、userId、orderId
- 项目启动时,开启一个线程任务,尝试获取stream.orders中的消息,完成下单\
修改lua表达式,新增3.6
VoucherOrderServiceImpl
private class VoucherOrderHandler implements Runnable {
@Override
public void run() {
while (true) {
try {
// 1.获取消息队列中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 >
List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from("g1", "c1"),
StreamReadOptions.empty().count(1).block(Duration.ofSeconds(2)),
StreamOffset.create("stream.orders", ReadOffset.lastConsumed())
);
// 2.判断订单信息是否为空
if (list == null || list.isEmpty()) {
// 如果为null,说明没有消息,继续下一次循环
continue;
}
// 解析数据
MapRecord<String, Object, Object> record = list.get(0);
Map<Object, Object> value = record.getValue();
VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
// 3.创建订单
createVoucherOrder(voucherOrder);
// 4.确认消息 XACK
stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
} catch (Exception e) {
log.error("处理订单异常", e);
//处理异常消息
handlePendingList();
}
}
}
private void handlePendingList() {
while (true) {
try {
// 1.获取pending-list中的订单信息 XREADGROUP GROUP g1 c1 COUNT 1 BLOCK 2000 STREAMS s1 0
List<MapRecord<String, Object, Object>> list = stringRedisTemplate.opsForStream().read(
Consumer.from("g1", "c1"),
StreamReadOptions.empty().count(1),
StreamOffset.create("stream.orders", ReadOffset.from("0"))
);
// 2.判断订单信息是否为空
if (list == null || list.isEmpty()) {
// 如果为null,说明没有异常消息,结束循环
break;
}
// 解析数据
MapRecord<String, Object, Object> record = list.get(0);
Map<Object, Object> value = record.getValue();
VoucherOrder voucherOrder = BeanUtil.fillBeanWithMap(value, new VoucherOrder(), true);
// 3.创建订单
createVoucherOrder(voucherOrder);
// 4.确认消息 XACK
stringRedisTemplate.opsForStream().acknowledge("s1", "g1", record.getId());
} catch (Exception e) {
log.error("处理pendding订单异常", e);
try{
Thread.sleep(20);
}catch(Exception e){
e.printStackTrace();
}
}
}
}
}