【网络】局域网LAN、广域网WAN、TCP/IP协议、封装和分用

文章目录

  • 局域网 LAN
  • 广域网 WAN
  • 网络中的重要概念
    • IP 地址
    • 端口号
  • 认识协议
    • 协议分层
      • 是什么
      • OSI 七层网络模型
      • TCP/IP 五层网络模型(或四层)
        • 物理层
        • 传输层
        • 网络层
        • 数据链表层
        • 应用层
        • 网络设备所在分层
    • 封装和分用
      • [站在发送方视角](封装)
      • [站在接收方视角](分用)

发展过程:
单机 —> 局域网 —> 广域网 —> 移动互联网

局域网 LAN

  • 局域⽹,即 Local Area Network,简称 LAN
  • Local 即标识了局域⽹是本地,局部组建的⼀种私有⽹络。
  • 局域⽹内的主机之间能⽅便的进⾏⽹络通信,⼜称为内⽹;局域⽹和局域⽹之间在没有连接的情况下,是⽆法通信的。局域⽹组建⽹络的⽅式有很多种:

  • 把几个电脑连接到一起,就构成了局域网

  • 但当电脑多了之后,就不方便两两相连,就创造了“路由器”

    • 只要电脑都连在同一个路由器上面,就可以构成局域网

[!quote] 调制解调器

  • 不同种类的信号转换
  • 这个是宽带普及之前,上网操作是通过“电话线”进行的,猫的作用是将电话线中的模拟新欢转换成网络中的“数字信号”
  • 光猫”就是把光信号和电信号之间进行相互转换(一般带有路由功能)
  • 因为路由器上面接口有限,当机器多了之后,就插不下了,此时就引入了“交换机”,就解决了上述问题
    • 交换机就相当与是对路由器的端口的扩展
    • 将计算机都插到交换机上面,然后交换机再连接路由器就行了
    • 此时这些电脑就相当于都插到路由器上了,这些电脑就都早一个局域网中了
    • 局域网是有路由器负责的,本身与交换器没有关系

image.png|527


广域网 WAN

  • ⼴域⽹,即 Wide Area Network,简称 WAN
  • 过路由器,将多个局域⽹连接起来,在物理上组成很⼤范围的⽹络,就形成了⼴域⽹。⼴域⽹内部的局域⽹都属于其⼦⽹。
  • 现在见到的“万维网”就是把全世界的设备都连接在一起的巨大广域网
  • “网游”就是电脑连接到了广域网上,可以和全国甚至全世界的玩家一起进行对抗

网络中的重要概念

IP 地址

  • IP 地址就是描述了一台主机,在互联网上所处的位置
  • IP 地址是使用一个 32 位整数来表示的
  • 使用“点分十进制”这样的方式,来表示“IP 地址”
    • 将 32 位整数用三个点分成了四份,每份取值范围 0~255(一个字节)
    • 使用点分十进制之后,更方便人阅读
    • image.png|568

端口号

  • 用来区分当前主机上的指定的应用程序(进程)
  • 一个主机上,使用网络的程序有很多个,可以通过端口号,区分当前主机收到的数据是要交给哪个程序来处理使用
  • 端口号同样也是一个整数,是一个两个字节的整数(0~65535)
    • 虽然是 0 ~65535 这样的范围,实际上 0~1023 这些端口都是有一些特定含义的
    • 咱们自己写代码使用的端口,一般都是用剩下的

[!quote] IP 地址和端口号
类似发送快递时,不光需要指定收货地址(IP地址),还需要指定收货⼈(端⼝号)

认识协议

网络中最核心的概念


  • 协议是进行一切通信的基础
  • 协议至少得有两个主机,让发送方发送数据,接收方能理解
  • 比如,我虽然在重庆上学,但我是湖北人,如果周围有人说重庆话,我有时候就听不到。
  • 这就属于无效的通信
  • 所以双方需要按照同样的规则来构造/解析数据,否则就是无效的通信
  • 协议就是在约束通信双方,交互数据的“规则”,协议确定了,双方就在一个频道上了,才能进行有意义的通信

所以,如何进行网络通信的问题,就转为了如何设计网络通信协议。

网络上传输的数据:光信号(光纤,激光的光)/电信号(网线里的)/电磁波(WiFi、5G…)

  • 无论是哪种信号,本质上都是传输 0101 这样的二进制
    • 光信号:可以用高低频光代表 0/1
    • 电信号:可以用高低频电代表 0/1
    • 电磁波:也是光,也可以通过频率进行编码
  • 所以在通信时就需要约定好,传输的这一大串 101010 都是啥意思
    • 这个就是"网络通信协议“要完成的核心工作

由于网络通信,是一件非常复杂的事情,如果只使用一个协议,去约定所有的网络通信细节,就会导致这个协议非常庞大,非常复杂

为了对抗这种复杂度,我们就进行“拆分”。将一个大的协议,拆分成多个小的协议,让每个小的协议,专注于解决一个/一类问题,再让这些协议相互配合

协议分层

是什么

  • 但是,拆分之后,拆出来了很多协议,不方便组织
  • 所以,将这些协议分层,把功能类似的协议放到一层,并且约定号,协议之间,不能随意进行交互,只能是相邻的层之间才能进行交互
    • 上层协议调用下层协议,下层协议给上层协议提供服务image.png

分层的好处:
image.png|463

  1. 降低了使用的成本,使用某个协议的时候,不需要关注其他协议的实现细节
    • 打电话这个事情,不需要理解电话机的工作原理,只需要会说话即可
  2. 降低整个体系的耦合性,可以灵活的变更某个协议
    • 可以经汉语协议变为英语协议,不妨碍打电话;可以经无线电协议变为电话协议,也不妨碍打电话

当前互联网体系的现状就是“协议分层”的效果

OSI 七层网络模型

这种划分方式,只是存在于教科书里,并没有被真正的采用


TCP/IP 五层网络模型(或四层)

当前世界上最主流的网络协议模型
四层就是不散物理层,物理层和硬件相关,距离程序员非常遥远


image.png

物理层

  • 物理层:描述的是硬件设备(网线这样的设备)需要满足什么样的条件
    • 物理层就相当与是“公路“、”铁路”、“航线”
传输层

  • 传输层:主要就是关注网络通信中的“起点和终点”,并不关心通信的中间细节
  • 比如,你在网上买了个东西
  • 下单的时候,需要填写“收件人信息”
  • 卖家给你发快递的时候,也需要填写“发件人信息”
  • 最后卖家就把快递给快递小哥,快递小哥最后将快递送到你手上
  • 在这个过程中,传输层就只关注发货地和收货地,并不关心快递是如何到你手上的、如何运输的…
网络层

  • 网络层:进行网络通信的路径规划地址管理
    • 网络是很负责的结构,从 A 到 B 中间有很多不同的路线,此时网络层协议就要进行“路径规划”,称为“路由选择
    • 网络上的这些设备他们的地址都是什么、怎么去描述、用什么样的一套规则也是网络层安排
  • 比如快递小哥揽收你的包裹之后,需要进行包裹运输
  • 就要规划选择一条合适的路径将包裹送到你手中
  • 合适的选择不是绝对的,可能看路程、可能看速度、可能看成本…
  • 使用地图导航,也是类似于网络层“路由选择”的过程
数据链表层

  • 数据链路层:针对好上述规划好的路径,进行具体的实施
  • 比如,你的包裹要从上海运往西安,选择的路径是:上海 —> 南京 —> 西安
  • 上海 —> 南京:走水路,坐船
  • 南京 —> 上海:走铁路,火车
  • 西安 —> 驿站:走公路,坐卡车
  • 驿站 —> 收货地:骑三轮
  • 在这每两个地点之间的交通选择,都是数据链路层负责的
  • 董事长(传输层) —> 制定一个公司的发展目标(今年营业额要达到 xxx 小目标)
  • 高管(网络层) —> 规划一下,如何达到上述目标,明确达到上述目标,分成几个步骤,先做什么再做什么。路径规划/路由选择的过程
  • 基层员工(数据链路层) —> 进行具体实施,第一步到第二步,第二步到第三步… 具体咋办
  • 办公用到的基础设施(物理层) —> 办公室、工位、电脑、打印机、网络…

这四层都是程序员干预不了的,操作系统/硬件设施已经实现好了的

应用层

  • 应用层:程序员可以干预到的,可以决定这个应用是用来干什么

下面的这篇文章中有详细介绍
应用层的作用、自定义应用层协议

网络设备所在分层
  • 对于⼀台主机,它的操作系统内核实现了从传输层到物理层的内容,也即是 TCP/IP 五层模型的下四层
  • 对于⼀台路由器,它实现了从⽹络层到物理层,也即是 TCP/IP 五层模型的下三层
  • 对于⼀台交换机,它实现了从数据链路层到物理层,也即是 TCP/IP 五层模型的下两层
  • 对于集线器,它只实现了物理层
    这都是站在经典的模型上讨论的,笔试中遇到了相关的选择/填空题,可以照着答

真实情况下,交换机也可能是工作在网络层,甚至是传输层/应用层
路由器也可能是工作在数据链路层,也可能是传输层,也可能是应用层

封装和分用

通过 QQ,发送一个 hello 给另一个人

[站在发送方视角](封装)

  1. 用户输入框中输入“hello”字符串,点击“发送”按钮
    • QQ 这样的程序,就会把 hello 这个内容从输入框读取到,构成一个“应用层数据包”
    • “应用层数据包”是应用层的协议,描述了这个数据包的构造,此处的应用层协议,往往是开发 QQ 的程序员自行定义的

[!quote] 序列化/反序列化

  • 将结构化数据 —> 二进制字符串:序列化
  • 将二进制字符串 —> 结构化数据:反序列化
  • 进行网络传输数据,通常就需要把一个“结构化”(C 的结构体/Java 的类,包含很多属性)数据转成一个“字符串”(二进制字符串,不需要非得在码表上可以查到,任何的 01 序列都可以接在一起)

[!quote] 应用层数据包

  • 主要是做了一个“序列化”的工作,将传入的信息整合成一个“字符串”
  • “应用层数据包”是应用层的协议,描述了这个数据包的构造,此处的应用层协议,往往是开发 QQ 的程序员自行定义的
  • 如果是我来开发 QQ,我可能会按照下列的方式定义这个应用层数据包的结构(定义方式有很多种)
    • 数据包格式:发送者的 QQ 号;接收者的 QQ 号;发送时间;消息正文\n
    • 数据包样例:123456789;987654321;2024-01-14 23:50:10;hello\n
  1. 应用层数据包准备就绪后,QQ 这样的应用程序,就会调用操作系统提供的 API传输层给应用层提供的 API

    • 操作系统就会提供一个类似于“发送数据”这样的 API,然后应用程序就会把上述组织好的应用层数据包作为参数传进来,于是应用层数据包就到了系统内核里,就进入到传输层的代码部分了
    • 此时,传输层这里,就会把上述的应用层数据,再进一步封装(字符串拼接)成一个传输层数据包
    • 由于传输层有多种协议(其中最重要的是两个:TCPUDP),这些协议给应用层提供的 API 是不同的,看应用程序种使用哪组 API 就使用哪个协议
      • 假设此处使用 UDP 协议,则会在刚刚整合的“字符串”前面加一个“UDP 报头”,这串“字符串”叫“UDP 正文/载荷payload)”
      • UDP报头中就包含了一些 UDP 相关的信息,比如发送者的端口号和接受者的端口号
      • 拼上的这些信息,都是给后续的转发打下基础的,就类似于“贴标签
      • 网络中,有多层协议,每一层协议都要贴标签,每一层标签的侧重点不同,贴上的标签中的信息也不一样
        image.png|592
  2. 传输层构造好数据之后,就会继续调用网络层提供给传输层的 API,把数据进一步交给网络层

    • 由于传输层和网络层都是系统内核里面实现好的,上述调用的过程,我们无需关心,也感知不到
    • 网络层也有多种协议,其中最重要的就是 IPv4 协议(简称为 IP 协议
      • IP 协议就会把上述拿到的传输层数据包构造成网络层数据包
      • IP 报头中也会包含很多信息,主要信息为发送方的 IP 地址,接收方的 IP 地址 image.png
  3. 网络层继续调用数据链路层的 API,把数据交给数据链路层处理

    • 数据链路层的常见协议是:以太网(平时插网线,进行上网的方式)
    • 在 IP 数据包的基础上,进一步进行包装image.png

网络传输数据的基本单位

  1. 数据包(packet)
  2. 数据报(Datagram)
  3. 数据段(segment)
  4. 数据帧(frame)

这几个术语严格来说是有区别的,但平时日常交流的时候,不会刻意区分

  1. 上述得到的数据,需要进一步交给物理层(硬件设备)
    • 网卡就会针对上述的二进制数据,进行真正的传输操作
    • 就需要把上述 0101 这样的序列转为光信号/电信号/电磁波…

[站在接收方视角](分用)

  1. 接收方物理层收到光电信号,把这样的光电信号还原成 010101 这样的二进制字符串

  2. 物理层转换回来的数据,交给数据链路层以太网拿到这个数据包,就会对这个数据包进行解析image.png|551

    • 拿出这里的报头载荷,根据报头中的信息做一些处理
    • 这个数据包是要丢弃、还是转发、还是自己保留,向上进行解析
      • 由于是站在接收方的视角,所以在这里这个数据包要交给上层协议,再做进一步解析
      • 所以这个数据包就会从数据链路层交给网络层

  1. 网络层拿到了上述解析好的数据,网络层的 IP 协议也要对这个数据包进行解析image.png|525
    • 取出 IP报头载荷
    • 根据报头中的信息确认,是丢弃、转发还是保留(给上层协议)
    • 由于是站在接收方的视角,所以在这里这个数据包要交给上层协议,再做进一步解析

  1. 传输层这边,UDP 协议也要针对数据进行解析|528
    • 取出 UDP 报头载荷
    • 此处也需要把载荷里面的内容,进一步交给应用层协议
    • 依赖 UDP 报头中的端口号,区分需要交给哪个应用程序(端口号就是用来区分不同进程的)

  1. 数据就到了 QQ 这样的应用程序这里了
    • QQ 就要针对上述的数据进行“反序列化
    • 再针对里面的数据进行进一步的逻辑
      1. 将收到的消息显示到界面上
      2. 播放“滴滴滴”这样的声音,提醒收到信息
      3. 显示弹窗,提示收到信息
      4. 更新未读消息的列表(红色的圆圈写个数字)

  • 此处接收方做的工作就是发送方工作的“逆向工作
  • 发送方的“封装”,认为是“打包快递
  • 接收方的“分用”,认为是“拆快递

一个电脑,会先连到交换机上,交换机可能连到路由器上,路由器可能又连到另一个交换机上,交换机又连到另一个路由器上… 总之,这中间会连接很多的交换机和路由器,来完成数据转发的过程
image.png|579

中间过程的交换机和路由器,也会涉及到封装和分用(不会像主机这样复杂)

  • 交换机封装分用到链路层,就可以决定数据是丢弃还是继续转发了,不再继续分用(经典的教科书上的交换机)
  • 路由器,封装分用到网络层,就可以决定数据是丢弃还是继续转发了,也不再继续分用
    在传输的过程中,每到一个设备都要进行封装分用,经过层层数据的交换,最终到达终点

封装分用这么麻烦,会不会导致交换机、路由器、主机之间的通信效率很低呢?

  • 得看和谁比
    • 如果是那网络通信和人的反应时间相比,速度还是很快的
    • 如果拿网络通信和读写硬盘相比,通常认为,网络的速度比硬盘的速度更慢
    • 更不必说和内存比了

也有特殊情况:

  • 如果拿网络中最强的“万兆网卡”和硬盘中最弱的“机械硬盘”相比,网络的速度更快

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/870975.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

邮票孔拼版制作方法

邮票孔拼版制作方法 拼版后的局部图:(中间用连接桥的方式,此方式能最少程度上减少残留) 2)拼版后的效果图 3)邮票孔拼版规则: 拼板与板间距1.2MM或者1.6MM 等邮票孔:8个0.55MM的孔,孔间距0.2MM加两排,邮票孔伸到…

linux服务 学习

服务(Service) 在Linux操作系统中,服务(Service)是一个基本概念,它通常指的是运行在后台的、持续提供特定功能或资源给系统内部组件或者网络上的客户端程序。 这些服务是系统正常运行和提供各种功能的关键…

【三维重建汇总】NeRF和GS重建中,如何排除干扰物?(提升质量)

汇总最近NeRF与GS提升质量的论文 文章目录 前言一、NeRF On-the-go:利用不确定性落地真实世界(CVPR24)摘要1.DINOv2特征的不确定性预测2.NeRF中干扰物去除的不确定性3.优化4. Dilated Patch 扩大采样5.实验结果 二、Pixel-GS:像素感知的梯度密…

关于nginx标准配置参数介绍

标准配置参数: user root;#配置用户或者组,默认为nobody worker_processes 4;#允许生成的进程数,默认为1 项目中nginx.conf配置文件 user root; worker_processes 4; //最大的进程数,要看服务器的内核是多少核的&#xff0…

Excel“取消工作表保护”忘记密码并恢复原始密码

文章目录 1.前言2.破解步骤3. 最终效果4.参考文献 1.前言 有时候别人发来的Excel中有些表格不能编辑,提示如下,但是又不知道原始密码 2.破解步骤 1、打开您需要破解保护密码的Excel文件; 2、依次点击菜单栏上的视图—宏----录制宏&#xf…

解决k8s分布式集群,子节点加入到主节点失败的问题

1.问题情况 Master主节点在 使用 kubeadm init 成功进行初始化后,如下所示 Your Kubernetes control-plane has initialized successfully!To start using your cluster, you need to run the following as a regular user:mkdir -p $HOME/.kubesudo cp -i /etc/k…

【Qt】 常用控件QLCDNumber

常用控件QLCDNumber QLCDNumber是一个专门用来显示数字的控件,类似于“老式计算机”的效果。 QLCDNumber的属性 属性说明 intValue QLCDNumber 显⽰的数字值(int). value QLCDNumber 显⽰的数字值(double). 和 intValue 是联动的. 例如给 value 设为 1.5, i…

玩转单例模式

目录 1. 饿汉式 2. 懒汉式 3. volatile解决指令重排序 4. 反射破坏单例模式 5. 枚举实现单例模式 6. 枚举实现单例模式的好处 7. 尝试反射破坏枚举 8. CAS实现单例模式 所谓单例模式,就是是某个类的实例对象只能被创建一次,单例模式有多种实现方…

【安全工具推荐-Search_Viewer资产测绘】

目录 一、工具介绍 二、工具配置 三、传送门 一、工具介绍 Search_Viewer,集Fofa、Hunter鹰图、Shodan、360 quake、Zoomeye 钟馗之眼、censys 为一体的空间测绘gui图形界面化工具,支持一键采集爬取和导出fofa、shodan等数据,方便快捷查看…

批发供应系统:提升效率与竞争力的关键

在当今复杂多变的商业环境中,批发供应系统作为连接生产商、分销商与零售商的重要纽带,其效率与智能化水平直接决定了供应链的运作效率与市场竞争力。随着信息技术的飞速发展,尤其是大数据、云计算、人工智能(AI)及物联…

基于HarmonyOS的宠物收养系统的设计与实现(一)

基于HarmonyOS的宠物收养系统的设计与实现(一) 本系统是简易的宠物收养系统,为了更加熟练地掌握HarmonyOS相关技术的使用。 项目创建 创建一个空项目取名为PetApp 首页实现(组件导航使用) 官方文档:组…

Qt系列之数据库(三)补充篇

一、数据库删除操作: 基本语法 DELETE FROM table_name WHERE [condition]; DELETE FROM ---- 关键字 table_name ---- 表名 WHERE ---- 条件的关键字 [condition] --- 条件表达式在这里插入代码片具体使用: QString sqlDelete QString("DELETE…

落地 DevOps,探索高效研发运营一体化解决方案

前言与概述 伴随着企业业务的快速发展,为了支撑业务发展,提高 IT 对业务的支撑能力建设。在研发工程协同方面,希望加强代码管理,实现持续构建、自动化测试、自动化部署、自动化运维,同时加强产品的安全和质量管理&…

ggplot阶截断坐标轴-gggap

目录 gggap包安装 功能查询 简单版使用代码 复杂版使用代码 gggap包安装 CRAN: Package gggap (-project.org) 手动下载安装 功能查询 > ?gggap > ?gggapDefine Segments in y-Axis for ggplot2 Description Easy-to-define segments in y-axis for ggplot2. …

React+Vis.js(05):节点的点击事件

文章目录 需求实现思路抽屉实现完整代码需求 双击节点,弹出右侧的“抽屉”,显示节点的详细信息 实现思路 vis.network提供了一个doubleClick事件,代码如下: network.on(doubleClick, function (properties) {// console.log(nodes);let id = properties

【数据结构】PTA 带头结点的链式表操作集 C语言

本题要求实现带头结点的链式表操作集。 函数接口定义: List MakeEmpty(); Position Find( List L, ElementType X ); bool Insert( List L, ElementType X, Position P ); bool Delete( List L, Position P ); 其中List结构定义如下: typedef struc…

STM32第十二节(中级篇):串口通信(第一节)——功能框图讲解

前言 我们在51单片机中就已经学习过了串口通信的相关知识点,那么我们现在在32单片机上进一步学习通信的原理。我们主要讲解串口功能框图以及串口初始化结构体以及固件库讲解。 STM32第十二节(中级篇):串口通信(第一节…

漏洞扫描的重要性,如何做好漏洞扫描服务

随着互联网技术的飞速发展,网络安全问题已成为不容忽视的重大挑战。其中,系统漏洞威胁作为最常见且严重的安全危险之一,对组织和个人的信息资产构成了巨大威胁。下面我们就来了解下漏洞扫描的好处、漏洞扫描的操作方法以及如何做好网络安全。…

使用 onBeforeRouteUpdate 组合式函数提升应用的用户体验

title: 使用 onBeforeRouteUpdate 组合式函数提升应用的用户体验 date: 2024/8/15 updated: 2024/8/15 author: cmdragon excerpt: 摘要:本文介绍如何在Nuxt 3开发中使用onBeforeRouteUpdate组合式函数来提升应用用户体验。通过在组件中注册路由更新守卫&#xf…

个人理解—MKCONFIG的常用配置参数与链接脚本

前面的文章说到,编写Makefile文件的常用语句以及相应的语法,但也提到了MKCONFIG去控制Makefile文件的变量实现条件编译,在MKCONFIG过程中,常用的变量配置有例如架构配置、交叉编译工具链配置等,这些选项要么你去通过改…