商城-学习整理-高级-商城业务-Sentinel限流熔断降级Sleuth+Zipkin链路追踪(二十二)

目录

  • 一、秒杀系统的架构
  • 二、SpringCloud Alibaba-Sentinel简介
    • 1、熔断降级限流
      • 什么是熔断
      • 什么是降级
      • 异同:
      • 什么是限流
    • 2、Sentinel 简介
      • 官方文档:
      • Sentinel 具有以下特征:
      • Sentinel 分为两个部分:
    • 3、Hystrix 与 Sentinel 比较
    • 4、整合 Feign+Sentinel 测试熔断降级
      • Sentinel 和 Hystrix 的原则是一致的:
      • 熔断降级设计理念
      • Sentinel 对这个问题采取了两种手段:
      • 1、引入依赖
      • 2、使用 Nacos 注册中心
      • 3、定义 fallback 实现
      • 4、定义 fallbackfactory 并放在容器中
      • 5、改造 fallback 类接受异常并实现容错方法
      • 6、远程接口配置 feign 客户端容错
      • 7、开启 sentinel 代理 feign 功能;在 application.properties 中配置
      • 8、测试降级效果
    • 5、整合 Sentinel 测试限流(流量控制)
      • 什么是流量控制
      • 流量控制设计理念
      • 1、引入 Sentinel starter
      • 2、接入限流埋点
      • 3、配置限流规则
        • 1、下载控制台:
        • 2、启动控制台,
        • 3、启动应用并配置
        • 4、控制台配置限流规则并验证
        • 5、自定义流控响应
        • 6、持久化流控规则
  • 三、项目引用
    • 1、下载sentinel,并启动
    • 2、自定义流控响应
    • 3、全服务引入
    • 4、流控模式&效果
    • 5、熔断降级
    • 6、自定义受保护资源
    • 7、网关限流
    • 8、定制网关流控返回
  • 四、Sleuth+Zipkin链路追踪
    • 1、为什么用
    • 2、基本术语
    • 3、整合 Sleuth
      • 1、服务提供者与消费者导入依赖
      • 2、打开 debug 日志
      • 3、发起一次远程调用,观察控制台
    • 4、整合 zipkin 可视化观察
      • 1、docker 安装 zipkin 服务器
      • 2、导入
      • 3、添加 zipkin 相关配置
    • 5、Zipkin 数据持久化

一、秒杀系统的架构

在这里插入图片描述

在这里插入图片描述

二、SpringCloud Alibaba-Sentinel简介

1、熔断降级限流

什么是熔断

A 服务调用 B 服务的某个功能,由于网络不稳定问题,或者 B 服务卡机,导致功能时间超长。如果这样子的次数太多。我们就可以直接将 B 断路了(A 不再请求 B 接口),凡是调用 B 的直接返回降级数据,不必等待 B 的超长执行。 这样 B 的故障问题,就不会级联影响到 A。

什么是降级

整个网站处于流量高峰期,服务器压力剧增,根据当前业务情况及流量,对一些服务和页面进行有策略的降级[停止服务,所有的调用直接返回降级数据]。以此缓解服务器资源的压力,以保证核心业务的正常运行,同时也保持了客户和大部分客户的得到正确的相应。

异同:

相同点:
1、为了保证集群大部分服务的可用性和可靠性,防止崩溃,牺牲小我
2、用户最终都是体验到某个功能不可用
不同点:
1、熔断是被调用方故障,触发的系统主动规则
2、降级是基于全局考虑,停止一些正常服务,释放资源

什么是限流

对打入服务的请求流量进行控制,使服务能够承担不超过自己能力的流量压力

2、Sentinel 简介

官方文档:

https://github.com/alibaba/Sentinel/wiki/%E4%BB%8B%E7%BB%8D
项目地址:https://github.com/alibaba/Sentinel
随着微服务的流行,服务和服务之间的稳定性变得越来越重要。Sentinel 以流量为切入点,从流量控制、熔断降级、系统负载保护等多个维度保护服务的稳定性。
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
默认用户名和密码都是sentinel

Sentinel 具有以下特征:

丰富的应用场景:Sentinel 承接了阿里巴巴近 10 年的双十一大促流量的核心场景,例如秒杀(即突发流量控制在系统容量可以承受的范围)、消息削峰填谷、集群流量控制、实时熔断下游不可用应用等。

完备的实时监控:Sentinel 同时提供实时的监控功能。您可以在控制台中看到接入应用的单台机器秒级数据,甚至 500 台以下规模的集群的汇总运行情况。

广泛的开源生态:Sentinel 提供开箱即用的与其它开源框架/库的整合模块,例如与 Spring Cloud、Dubbo、gRPC 的整合。您只需要引入相应的依赖并进行简单的配置即可快速地接入 Sentinel。

完善的 SPI 扩展点:Sentinel 提供简单易用、完善的 SPI 扩展接口。您可以通过实现扩展接口来快速地定制逻辑。例如定制规则管理、适配动态数据源等。

在这里插入图片描述

Sentinel 分为两个部分:

 核心库(Java 客户端)不依赖任何框架/库,能够运行于所有 Java 运行时环境,同时对 Dubbo / Spring Cloud 等框架也有较好的支持。

 控制台(Dashboard)基于 Spring Boot 开发,打包后可以直接运行,不需要额外的Tomcat 等应用容器。

Sentinel 基本概念
 资源
资源是 Sentinel 的关键概念。它可以是 Java 应用程序中的任何内容,例如,由应用程序提供的服务,或由应用程序调用的其它应用提供的服务,甚至可以是一段代码。在接下来的文档中,我们都会用资源来描述代码块。

只要通过 Sentinel API 定义的代码,就是资源,能够被 Sentinel 保护起来。大部分情况下,可以使用方法签名,URL,甚至服务名称作为资源名来标示资源。

 规则
围绕资源的实时状态设定的规则,可以包括流量控制规则、熔断降级规则以及系统保护规则。所有规则可以动态实时调整。

3、Hystrix 与 Sentinel 比较

在这里插入图片描述

4、整合 Feign+Sentinel 测试熔断降级

https://github.com/alibaba/Sentinel/wiki/%E4%B8%BB%E9%A1%B5
什么是熔断降级除了流量控制以外,降低调用链路中的不稳定资源也是 Sentinel 的使命之一。由于调用关系的复杂性,如果调用链路中的某个资源出现了不稳定,最终会导致请求发生堆积。

在这里插入图片描述

Sentinel 和 Hystrix 的原则是一致的:

当检测到调用链路中某个资源出现不稳定的表现,例如请求响应时间长或异常比例升高的时候,则对这个资源的调用进行限制,让请求快速失败,避免影响到其它的资源而导致级联故障。

熔断降级设计理念

在限制的手段上,Sentinel 和 Hystrix 采取了完全不一样的方法。
Hystrix 通过 线程池隔离 的方式,来对依赖(在 Sentinel 的概念中对应 资源)进行了隔离。这样做的好处是资源和资源之间做到了最彻底的隔离。缺点是除了增加了线程切换的成本(过多的线程池导致线程数目过多),还需要预先给各个资源做线程池大小的分配。

Sentinel 对这个问题采取了两种手段:

 通过并发线程数进行限制
和资源池隔离的方法不同,Sentinel 通过限制资源并发线程的数量,来减少不稳定资源对其它资源的影响。这样不但没有线程切换的损耗,也不需要您预先分配线程池的大小。当某个资源出现不稳定的情况下,例如响应时间变长,对资源的直接影响就是会造成线程数的逐步
堆积。当线程数在特定资源上堆积到一定的数量之后,对该资源的新请求就会被拒绝。堆积的线程完成任务后才开始继续接收请求。

 通过响应时间对资源进行降级
除了对并发线程数进行控制以外,Sentinel 还可以通过响应时间来快速降级不稳定的资源。当依赖的资源出现响应时间过长后,所有对该资源的访问都会被直接拒绝,直到过了指定的时间窗口之后才重新恢复。
整合测试:
https://github.com/alibaba/spring-cloud-alibaba/blob/master/spring-cloud-alibaba-examples/sentinel-example/sentinel-feign-example/readme-zh.md

1、引入依赖

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>
<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2、使用 Nacos 注册中心

<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-nacos-discovery</artifactId>
</dependency>

3、定义 fallback 实现

在服务消费者中,实现 feign 远程接口,接口的实现方法即为调用错误的容错方法

public class OrderFeignServiceFallBack implements OrderFeignService {
@Override
public Resp<OrderVo> getOrderInfo(String orderSn) {
return null;
}
}

4、定义 fallbackfactory 并放在容器中

@Component
public class OrderFeignFallbackFactory implements
FallbackFactory<OrderFeignServiceFallBack> {
@Override
public OrderFeignServiceFallBack create(Throwable throwable) {
return new OrderFeignServiceFallBack(throwable);
}
}

5、改造 fallback 类接受异常并实现容错方法

public class OrderFeignServiceFallBack implements OrderFeignService {
private Throwable throwable;
public OrderFeignServiceFallBack(Throwable throwable){
this.throwable = throwable;
}
@Override
public Resp<OrderVo> getOrderInfo(String orderSn) {
return Resp.fail(new OrderVo());
}
}

6、远程接口配置 feign 客户端容错

@FeignClient(value = "gulimall-oms",fallbackFactory =
OrderFeignFallbackFactory.class)
public interface OrderFeignService {
@GetMapping("/oms/order/bysn/{orderSn}")
public Resp<OrderVo> getOrderInfo(@PathVariable("orderSn") String
orderSn);
}

7、开启 sentinel 代理 feign 功能;在 application.properties 中配置

feign.sentinel.enabled=true

测试熔断效果。当远程服务出现问题,会自动调用回调方法返回默认数据,并且更快的容错方式
1、使用@SentinelResource,并定义 fallback

@SentinelResource(value = "order",fallback = "e")

Fallback 和原方法签名一致,但是最多多一个 Throwable 类型的变量接受异常。
https://github.com/alibaba/Sentinel/wiki/%E6%B3%A8%E8%A7%A3%E6%94%AF%E6%8C%81
需要给容器中配置注解切面

@Bean
public SentinelResourceAspect sentinelResourceAspect() {
return new SentinelResourceAspect();
}

在控制台添加降级策略

在这里插入图片描述

8、测试降级效果

当远程服务停止,前几个服务会尝试调用远程服务,满足降级策略条件以后则不会再尝试调用远程服务

5、整合 Sentinel 测试限流(流量控制)

https://github.com/alibaba/spring-cloud-alibaba/blob/master/spring-cloud-alibaba-examples/sentinel-example/sentinel-core-example/readme-zh.md

什么是流量控制

流量控制在网络传输中是一个常用的概念,它用于调整网络包的发送数据。然而,从系统稳定性角度考虑,在处理请求的速度上,也有非常多的讲究。任意时间到来的请求往往是随机不可控的,而系统的处理能力是有限的。我们需要根据系统的处理能力对流量进行控制。Sentinel 作为一个调配器,可以根据需要把随机的请求调整成合适的形状,如下图所示:

在这里插入图片描述

流量控制设计理念

流量控制有以下几个角度:
 资源的调用关系,例如资源的调用链路,资源和资源之间的关系;
 运行指标,例如 QPS、线程池、系统负载等;
 控制的效果,例如直接限流、冷启动、排队等。
Sentinel 的设计理念是让您自由选择控制的角度,并进行灵活组合,从而达到想要的效果。

1、引入 Sentinel starter

<dependency>
<groupId>com.alibaba.cloud</groupId>
<artifactId>spring-cloud-starter-alibaba-sentinel</artifactId>
</dependency>

2、接入限流埋点

 HTTP 埋点
Sentinel starter 默认为所有的 HTTP 服务提供了限流埋点,如果只想对 HTTP 服务进行限流,那么只需要引入依赖,无需修改代码。
 自定义埋点
如果需要对某个特定的方法进行限流或降级,可以通过 @SentinelResource 注解来完成限流
的埋点,示例代码如下:

@SentinelResource("resource")
public String hello() {
return "Hello";
}

当 然 也 可 以 通 过 原 始 的 SphU.entry(xxx) 方 法 进 行 埋 点 , 可 以 参 见 Sentinel 文 档
(https://github.com/alibaba/Sentinel/wiki/%E5%A6%82%E4%BD%95%E4%BD%BF%E7%94%A8#%E5%AE%9A%E4%B9%89%E8%B5%84%E6%BA%90)。

3、配置限流规则

Sentinel 提供了两种配置限流规则的方式:代码配置 和 控制台配置。

 通过代码来实现限流规则的配置。一个简单的限流规则配置示例代码如下,更多限流规
则配置详情请参考 Sentinel 文档。
( https://github.com/alibaba/Sentinel/wiki/%E5%A6%82%E4%BD%95%E4%BD%BF%E7%94%A8
#%E5%AE%9A%E4%B9%89%E8%A7%84%E5%88%99List<FlowRule> rules = new ArrayList<FlowRule>();
FlowRule rule = new FlowRule();
rule.setResource(str);
// set limit qps to 10
rule.setCount(10);
rule.setGrade(RuleConstant.FLOW_GRADE_QPS);
rule.setLimitApp("default");
rules.add(rule);
FlowRuleManager.loadRules(rules);
 通过控制台进行限流规则配置

1、下载控制台:

http://edas-public.oss-cn-hangzhou.aliyuncs.com/install_package/demo/sentinel-dashboard.jar

2、启动控制台,

执行 Java 命令 java -jar sentinel-dashboard.jar 完成 Sentinel 控制台的启动。 控制台默认的监听端口为 8080。

3、启动应用并配置

增加配置,在应用的 /src/main/resources/application.properties 中添加基本配置信息
spring.application.name=sentinel-example
server.port=18083
spring.cloud.sentinel.transport.dashboard=localhost:8080

4、控制台配置限流规则并验证

访问 http://localhost:8080 页面。

如果您在控制台没有找到应用,请调用一下进行了 Sentinel 埋点的 URL 或方法,因为Sentinel 使用了 lazy load 策略。
任意发送请求,可以在簇点链路里面看到刚才的请求,可以对请求进行流控;
在这里插入图片描述
测试流控效果
在这里插入图片描述

5、自定义流控响应

在这里插入图片描述

6、持久化流控规则

默认的流控规则是保存在项目的内存中,项目停止再启动,流控规则就是失效。我们可以持久化保存规则;
https://github.com/alibaba/Sentinel/wiki/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%99%E
6%89%A9%E5%B1%95#datasource-%E6%89%A9%E5%B1%95
生产环境使用模式:
我 们 推 荐 通 过 控 制 台 设 置 规 则 后 将 规 则 推 送 到 统 一 的 规 则 中 心 , 客 户 端 实 现ReadableDataSource 接口端监听规则中心实时获取变更,
在这里插入图片描述
解决方案:
DataSource 扩展常见的实现方式有:
 拉模式:客户端主动向某个规则管理中心定期轮询拉取规则,这个规则中心可以是RDBMS、文件,甚至是 VCS 等。这样做的方式是简单,缺点是无法及时获取变更;
 推模式:规则中心统一推送,客户端通过注册监听器的方式时刻监听变化,比如使用Nacos、Zookeeper 等配置中心。这种方式有更好的实时性和一致性保证。

推荐模式:使用 Nacos 配置规则
1、引入依赖

<dependency>
<groupId>com.alibaba.csp</groupId>
<artifactId>sentinel-datasource-nacos</artifactId>
<version>1.6.3</version>
</dependency>

2、编写配置类,
https://github.com/alibaba/Sentinel/wiki/%E5%8A%A8%E6%80%81%E8%A7%84%E5%88%99%E
6%89%A9%E5%B1%95#%E6%8E%A8%E6%A8%A1%E5%BC%8F%E4%BD%BF%E7%94%A8-nacos- %E9%85%8D%E7%BD%AE%E8%A7%84%E5%88%99

@Configuration
public class SentinelConfig {
public SentinelConfig(){
//1、加载流控策略
ReadableDataSource<String, List<FlowRule>> flowRuleDataSource = new
NacosDataSource<>("127.0.0.1:8848", "demo", "sentinel",
source -> JSON.parseObject(source, new
TypeReference<List<FlowRule>>() {}));
FlowRuleManager.register2Property(flowRuleDataSource.getProperty());
//2、加载降级策略
ReadableDataSource<String, List<DegradeRule>> degradeRuleDataSource =
new NacosDataSource<>("127.0.0.1:8848", "demo", "sentinel",
source -> JSON.parseObject(source, new
TypeReference<List<DegradeRule>>() {}));
DegradeRuleManager.register2Property(degradeRuleDataSource.getProperty());
//3、加载系统规则
ReadableDataSource<String, List<SystemRule>> systemRuleDataSource =
new NacosDataSource<>("127.0.0.1:8848", "demo", "sentinel",
source -> JSON.parseObject(source, new
TypeReference<List<SystemRule>>() {}));
SystemRuleManager.register2Property(systemRuleDataSource.getProperty());
//4、加载权限策略
ReadableDataSource<String, List<AuthorityRule>>
authorityRuleDataSource = new NacosDataSource<>("127.0.0.1:8848", "demo",
"sentinel",
source -> JSON.parseObject(source, new
TypeReference<List<AuthorityRule>>() {}));
AuthorityRuleManager.register2Property(authorityRuleDataSource.getProperty(
));
}
}

参照 https://github.com/alibaba/Sentinel/wiki/Dynamic-Rule-Configuration 查看更多控制规则
3、在 nacos 中创建 dataId,并使用 json 格式
在这里插入图片描述
4、添加一条流控规则测试

[
{ "resource": "/ums/member/list", "limitApp": "default", "grade": 1, "count": 5, "strategy": 0, "controlBehavior": 0, "clusterMode": false
}
]

配置含义说明:
https://github.com/alibaba/Sentinel/wiki/%E6%B5%81%E9%87%8F%E6%8E%A7%E5%88%B6
resource:资源名,即限流规则的作用对象
count: 限流阈值
grade: 限流阈值类型(QPS 或并发线程数)
limitApp: 流控针对的调用来源,若为 default 则不区分调用来源
strategy: 调用关系限流策略
controlBehavior: 流量控制效果(直接拒绝、Warm Up、匀速排队)
5、系统规则,降级规则等均可添加

[
{ "resource": "/ums/member/list", "limitApp": "default", "grade": 1, "count": 5, "strategy": 0, "controlBehavior": 0, "clusterMode": false
},{ "highestSystemLoad": -1, "highestCpuUsage": 0.99, "qps": 2, "avgRt": 10, "maxThread": 10
}
]

6、最终效果
Sentinel 控制台改变流控规则,不能推送到 nacos 中,Nacos 中改变流控规则可以实时观察到变化
在这里插入图片描述

第 2 步 API 的方式,可以直接变为配置方式;在 application.properties 中配置
spring.cloud.sentinel.datasource.ds.nacos.server-addr=127.0.0.
1:8848
spring.cloud.sentinel.datasource.ds.nacos.data-id=sentinel
spring.cloud.sentinel.datasource.ds.nacos.group-id=demo
spring.cloud.sentinel.datasource.ds.nacos.rule-type=flow
spring.cloud.sentinel.datasource.ds1.nacos.server-addr=127.0.0
.1:8848
spring.cloud.sentinel.datasource.ds1.nacos.data-id=sentinel
spring.cloud.sentinel.datasource.ds1.nacos.group-id=demo
spring.cloud.sentinel.datasource.ds1.nacos.rule-type=system
ds,ds1 是随便写的。

三、项目引用

1、下载sentinel,并启动

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
默认用户名和密码都是sentinel

2、自定义流控响应

3、全服务引入

4、流控模式&效果

5、熔断降级

6、自定义受保护资源

7、网关限流

8、定制网关流控返回

四、Sleuth+Zipkin链路追踪

1、为什么用

微服务架构是一个分布式架构,它按业务划分服务单元,一个分布式系统往往有很多个服务单元。由于服务单元数量众多,业务的复杂性,如果出现了错误和异常,很难去定位。主要体现在,一个请求可能需要调用很多个服务,而内部服务的调用复杂性,决定了问题难以
定位。所以微服务架构中,必须实现分布式链路追踪,去跟进一个请求到底有哪些服务参与,参与的顺序又是怎样的,从而达到每个请求的步骤清晰可见,出了问题,很快定位。

链路追踪组件有 Google 的 Dapper,Twitter 的 Zipkin,以及阿里的 Eagleeye (鹰眼)等,它们都是非常优秀的链路追踪开源组件。

2、基本术语

 Span(跨度):基本工作单元,发送一个远程调度任务 就会产生一个 Span,Span 是一个 64 位 ID 唯一标识的,Trace 是用另一个 64 位 ID 唯一标识的,Span 还有其他数据信息,比如摘要、时间戳事件、Span 的 ID、以及进度 ID。

 Trace(跟踪):一系列 Span 组成的一个树状结构。请求一个微服务系统的 API 接口,这个 API 接口,需要调用多个微服务,调用每个微服务都会产生一个新的 Span,所有由这个请求产生的 Span 组成了这个 Trace。

 Annotation(标注):用来及时记录一个事件的,一些核心注解用来定义一个请求的开始和结束 。这些注解包括以下:

 cs - Client Sent -客户端发送一个请求,这个注解描述了这个 Span 的开始

 sr - Server Received -服务端获得请求并准备开始处理它,如果将其 sr 减去 cs 时间戳便可得到网络传输的时间。

 ss - Server Sent (服务端发送响应)–该注解表明请求处理的完成(当请求返回客户端),如果 ss 的时间戳减去 sr 时间戳,就可以得到服务器请求的时间。

 cr - Client Received (客户端接收响应)-此时 Span 的结束,如果 cr 的时间戳减去cs 时间戳便可以得到整个请求所消耗的时间。
官方文档:
https://cloud.spring.io/spring-cloud-static/spring-cloud-sleuth/2.1.3.RELEASE/single/spring-cloud-sleuth.html
如果服务调用顺序如下
在这里插入图片描述
那么用以上概念完整的表示出来如下:
在这里插入图片描述
Span 之间的父子关系如下:
在这里插入图片描述

3、整合 Sleuth

1、服务提供者与消费者导入依赖

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>

2、打开 debug 日志

logging:
level:
org.springframework.cloud.openfeign: debug
org.springframework.cloud.sleuth: debug

3、发起一次远程调用,观察控制台

DEBUG [user-service,541450f08573fff5,541450f08573fff5,false]
user-service:服务名
541450f08573fff5:是 TranceId,一条链路中,只有一个 TranceId
541450f08573fff5:是 spanId,链路中的基本工作单元 id
false:表示是否将数据输出到其他服务,true 则会把信息输出到其他可视化的服务上观察

4、整合 zipkin 可视化观察

通过 Sleuth 产生的调用链监控信息,可以得知微服务之间的调用链路,但监控信息只输出到控制台不方便查看。我们需要一个图形化的工具-zipkin。Zipkin 是 Twitter 开源的分布式跟踪系统,主要用来收集系统的时序数据,从而追踪系统的调用问题。zipkin 官网地址如下:
https://zipkin.io/

在这里插入图片描述

1、docker 安装 zipkin 服务器

docker run -d -p 9411:9411 openzipkin/zipkin

2、导入

<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>

zipkin 依赖也同时包含了 sleuth,可以省略 sleuth 的引用

3、添加 zipkin 相关配置

spring:
application:
name: user-service
zipkin:
base-url: http://192.168.56.10:9411/ # zipkin 服务器的地址
#关闭服务发现,否则 Spring Cloud 会把 zipkin 的 url 当做服务名称
discoveryClientEnabled: false
sender:
type: web # 设置使用 http 的方式传输数据
sleuth:
sampler:
probability: 1 # 设置抽样采集率为 100%,默认为 0.1,即 10%

发送远程请求,测试 zipkin。

服务调用链追踪信息统计

在这里插入图片描述
服务依赖信息统计

在这里插入图片描述

5、Zipkin 数据持久化

Zipkin 默认是将监控数据存储在内存的,如果 Zipkin 挂掉或重启的话,那么监控数据就会丢失。所以如果想要搭建生产可用的 Zipkin,就需要实现监控数据的持久化。而想要实现数据持久化,自然就是得将数据存储至数据库。好在 Zipkin 支持将数据存储至:
 内存(默认)
 MySQL
 Elasticsearch
 Cassandra
Zipkin 数据持久化相关的官方文档地址如下:
https://github.com/openzipkin/zipkin#storage-component

Zipkin 支持的这几种存储方式中,内存显然是不适用于生产的,这一点开始也说了。而使用MySQL 的话,当数据量大时,查询较为缓慢,也不建议使用。Twitter 官方使用的是 Cassandra作为 Zipkin 的存储数据库,但国内大规模用 Cassandra 的公司较少,而且 Cassandra 相关文档也不多。
综上,故采用 Elasticsearch 是个比较好的选择,关于使用 Elasticsearch 作为 Zipkin 的存储数
据库的官方文档如下:
elasticsearch-storage:
https://github.com/openzipkin/zipkin/tree/master/zipkin-server#elasticsearch-storage

zipkin-storage/elasticsearch

https://github.com/openzipkin/zipkin/tree/master/zipkin-storage/elasticsearch
通过 docker 的方式

docker run --env STORAGE_TYPE=elasticsearch --env ES_HOSTS=192.168.56.10:9200
openzipkin/zipkin-dependencies

在这里插入图片描述
使用 es 时 Zipkin Dependencies 支持的环境变量
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/85955.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

UE4 地形编辑基础知识 学习笔记

之前自己写过这样的功能&#xff0c;今天看到一个UE现成的 点击地形&#xff0c;选择样条 按住CTRL键点击屏幕中某一个点会在场景内生成一个这样的图标 再点两次&#xff0c;会生成B样条的绿线条 点击号再选择一个模型&#xff0c;会生成对应的链条状的mesh 拉高最远处的一个图…

【从零学习python 】75. TCP协议:可靠的面向连接的传输层通信协议

文章目录 TCP协议TCP通信的三个步骤TCP特点TCP与UDP的区别TCP通信模型进阶案例 TCP协议 TCP协议&#xff0c;传输控制协议&#xff08;英语&#xff1a;Transmission Control Protocol&#xff0c;缩写为 TCP&#xff09;是一种面向连接的、可靠的、基于字节流的传输层通信协议…

收集的一些比较好的git网址

1、民间故事 https://github.com/folkstory/lingqiu/blob/master 2、童话故事 https://gutenberg.org/cache/epub/11027/pg11027-images.html 搜索&#xff1a;fairy story 3、一千零一夜 https://gutenberg.org/cache/epub/2591/pg2591-images.html 4、ai绘画关键词 https:…

电力巡检三维数字化管理的新方案:图新地球电力版

电力工业是国民经济发展的重要基础能源产业&#xff0c;是世界各国经济发展战略中的优先发展重点。当前中国电力行业运行平稳&#xff0c;电力消费持续增长&#xff0c;电力装机结构延续绿色低碳发展态势&#xff0c;同时投资规模日益扩大。随着全民用电量持续快速增长&#xf…

django+MySQL购物商城系统(含源码+论文)

对购物商城管理的流程进行科学整理、归纳和功能的精简&#xff0c;通过软件工程的研究方法&#xff0c;结合当下流行的互联网技术&#xff0c;最终设计并实现了一个简单、易操作的购物商城系统。内容包括系统的设计思路、系统模块和实现方法。系统使用过程主要涉及到管理员和用…

【3Ds Max】可编辑多边形“点”层级的简单使用

目录 简介 示例 &#xff08;1&#xff09;移除 &#xff08;2&#xff09;断开 &#xff08;3&#xff09;焊接 &#xff08;4&#xff09;挤出 &#xff08;5&#xff09;切角 &#xff08;6&#xff09;目标焊接 &#xff08;7&#xff09;连接 简介 在3ds Max中&…

气传导耳机哪个好?推荐几款性能表现不错的气传导耳机

​蓝牙耳机大家都很熟悉&#xff0c;如果更了解一些的朋友&#xff0c;一定也知道气传导耳机。气传导耳机最大的好处在于不入耳佩戴更舒适&#xff0c;户外使用时还能听到周围环境音&#xff0c;不会屏蔽汽车鸣笛声&#xff0c;使用更加安全。但也还有很多小伙伴不知道气传导耳…

香蕉派社区推出带10G SFP+ 端口的Banana Pi BPI-R4 Wifi7开源路由器

香蕉派BPI-R4 根据著名Banana Pi品牌背后的公司Sinovoip提供的初步信息&#xff0c;他们即将推出的Banana Pi BPI-R4路由器板目前正在开发中。与之前的 Banana Pi R3 板相比&#xff0c;这在规格上将有显着提升。这就是我们目前所知道的。 您可以选择 R4 板的两种不同配置。具…

Python爬虫——scrapy_多条管道下载

定义管道类&#xff08;在pipelines.py里定义&#xff09; import urllib.requestclass DangDangDownloadPipelines:def process_item(self, item, spider):url http: item.get(src)filename ../books_img/ item.get(name) .jpgurllib.request.urlretrieve(url, filename…

有些网络通信协议? - 易智编译EaseEditing

网络通信协议是计算机网络中用于实现数据传输和通信的规则和标准。以下是一些常见的网络通信协议&#xff1a; TCP/IP协议&#xff1a; 是互联网的核心协议&#xff0c;包括传输控制协议&#xff08;TCP&#xff09;和网际协议&#xff08;IP&#xff09;。TCP负责数据的可靠传…

JMETER基本原理

Jmeter基本原理是建立一个线程池&#xff0c;多线程运行取样器产生大量负载&#xff0c;在运行过程中通过断言来验证结果的正确性&#xff0c;可以通过监听来记录测试结果&#xff1b; JMETER是运行在JVM虚拟机上的&#xff0c;每个进程的开销比loadrunner的进程开销大&#x…

java八股文面试[数据结构]——集合框架

Java集合体系框架 Java集合类主要由两个根接口Collection和Map派生出来的。 Collection派生出了三个子接口&#xff1a; Map接口派生&#xff1a; Map代表的是存储key-value对的集合&#xff0c;可根据元素的key来访问value。 因此Java集合大致也可分成List、Set、Queue、Map…

Java面向对象三大特性之多态及综合练习

1.1 多态的形式 多态是继封装、继承之后&#xff0c;面向对象的第三大特性。 多态是出现在继承或者实现关系中的。 多态体现的格式&#xff1a; 父类类型 变量名 new 子类/实现类构造器; 变量名.方法名(); 多态的前提&#xff1a;有继承关系&#xff0c;子类对象是可以赋…

PaddleRS 1.0.0版本安装

PaddleRS 1.0.0版本安装 PaddleRS是百度飞桨、遥感科研院所及相关高校共同开发的基于飞桨的遥感影像智能解译开发套件&#xff0c; 支持图像分割、目标检测、场景分类、变化检测、图像复原等常见遥感任务。 PaddleRS致力于帮助遥感领域科研从业者快速完成算法的研发、验证和调…

Java接入支付宝支付

本文只接入了支付宝中的APP支付&#xff0c;如果要拓展更多支付方式的的话&#xff0c;请看文末补充 项目支付流程 前端发起创建订单请求后端接受请求创建订单&#xff0c;并将订单参数进行支付宝对应签名并返回前端拿到签名后调起支付宝支付 本文主要写的就是2的过程 前期准…

生信豆芽菜-EMT评分的计算

网址&#xff1a;http://www.sxdyc.com/gradeEmt 1、数据准备 表达谱数据&#xff0c;行为基因&#xff0c;列为样本 2、提交后&#xff0c;等待运行成功即可下载 当然&#xff0c;如果不清楚数据是什么样的&#xff0c;可以选择下载我们的示例数据&#xff0c;也可以关注…

Java课题笔记~Element UI

Element&#xff1a;是饿了么公司前端开发团队提供的一套基于 Vue 的网站组件库&#xff0c;用于快速构建网页。 Element 提供了很多组件&#xff08;组成网页的部件&#xff09;供我们使用。例如 超链接、按钮、图片、表格等等~ 如下图左边的是我们编写页面看到的按钮&#…

Qt+C++串口调试接收发送数据曲线图

程序示例精选 QtC串口调试接收发送数据曲线图 如需安装运行环境或远程调试&#xff0c;见文章底部个人QQ名片&#xff0c;由专业技术人员远程协助&#xff01; 前言 这篇博客针对<<QtC串口调试接收发送数据曲线图>>编写代码&#xff0c;代码整洁&#xff0c;规则&…

【Android】 No matching variant of com.android.tools.build:gradle:[版本号] was found

项目报错 No matching variant of com.android.tools.build:gradle:8.1.1 was found. The consumer was configured to find a library for use during runtime, compatible with Java 8, packaged as a jar, and its dependencies declared externally, as well as attribute …

数据结构与算法:通往编程高地的必修课(文末送书)

&#x1f935;‍♂️ 个人主页&#xff1a;艾派森的个人主页 ✍&#x1f3fb;作者简介&#xff1a;Python学习者 &#x1f40b; 希望大家多多支持&#xff0c;我们一起进步&#xff01;&#x1f604; 如果文章对你有帮助的话&#xff0c; 欢迎评论 &#x1f4ac;点赞&#x1f4…