1、一般用什么作为HashMap的key?
一般用Integer、String 这种不可变类当 HashMap 当 key,而且 String 最为常用。
-
因为字符串是不可变的,所以在它创建的时候 hashcode 就被缓存了,不需要重新计算。这就是HashMap 中的键往往都使用字符串的原因。
-
因为获取对象的时候要用到 equals() 和 hashCode() 方法,那么键对象正确的重写这两个方法是非常重要的,这些类已经很规范的重写了 hashCode() 以及 equals() 方法。
2、HashMap为什么线程不安全?
-
多线程下扩容死循环。JDK1.7中的 HashMap 使用头插法插入元素,在多线程的环境下,扩容的时候有可能导致环形链表的出现,形成死循环。因此,JDK1.8使用尾插法插入元素,在扩容时会保持链表元素原本的顺序,不会出现环形链表的问题。
-
多线程的put可能导致元素的丢失。多线程同时执行 put 操作,如果计算出来的索引位置是相同的,那会造成前一个 key 被后一个 key 覆盖,从而导致元素的丢失。此问题在JDK 1.7和 JDK 1.8 中都存在。
-
put和get并发时,可能导致get为null。线程1执行put时,因为元素个数超出threshold而导致rehash,线程2此时执行get,有可能导致这个问题。此问题在JDK 1.7和 JDK 1.8 中都存在。
3、ConcurrentHashMap 的实现原理是什么?
ConcurrentHashMap 在 JDK1.7 和 JDK1.8 的实现方式是不同的。
先来看下JDK1.7
JDK1.7中的ConcurrentHashMap 是由 Segment 数组结构和 HashEntry 数组结构组成,即ConcurrentHashMap 把哈希桶切分成小数组(Segment),每个小数组有 n 个 HashEntry 组成。
其中,Segment 继承了 ReentrantLock,所以 Segment 是一种可重入锁,扮演锁的角色;HashEntry用于存储键值对数据。
首先将数据分为一段一段的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问,能够实现真正的并发访问。
再来看下JDK1.8
在数据结构上, JDK1.8 中的ConcurrentHashMap 选择了与 HashMap 相同的数组+链表+红黑树结构;在锁的实现上,抛弃了原有的 Segment 分段锁,采用 CAS + synchronized 实现更加低粒度的锁。
将锁的级别控制在了更细粒度的哈希桶元素级别,也就是说只需要锁住这个链表头结点(红黑树的根节点),就不会影响其他的哈希桶元素的读写,大大提高了并发度。
4、ConcurrentHashMap 的 put 方法执行逻辑是什么?
先来看JDK1.7
首先,会尝试获取锁,如果获取失败,利用自旋获取锁;如果自旋重试的次数超过 64 次,则改为阻塞获取锁。
获取到锁后:
-
将当前 Segment 中的 table 通过 key 的 hashcode 定位到 HashEntry。
-
遍历该 HashEntry,如果不为空则判断传入的 key 和当前遍历的 key 是否相等,相等则覆盖旧的value。
-
不为空则需要新建一个 HashEntry 并加入到 Segment 中,同时会先判断是否需要扩容。
-
释放 Segment 的锁。
再来看JDK1.8
大致可以分为以下步骤:
-
根据 key 计算出 hash值。
-
判断是否需要进行初始化。
-
定位到 Node,拿到首节点 f,判断首节点 f:
-
如果为 null ,则通过cas的方式尝试添加。
-
如果为 f.hash = MOVED = -1 ,说明其他线程在扩容,参与一起扩容。
-
如果都不满足 ,synchronized 锁住 f 节点,判断是链表还是红黑树,遍历插入。
- 当在链表长度达到8的时候,数组扩容或者将链表转换为红黑树。
5、ConcurrentHashMap 的 get 方法是否要加锁,为什么?
get 方法不需要加锁。因为 Node 的元素 val 和指针 next 是用 volatile 修饰的,在多线程环境下线程A修改结点的val或者新增节点的时候是对线程B可见的。
这也是它比其他并发集合比如 Hashtable、用Collections.synchronizedMap()包装的 HashMap 安全效率高的原因之一。
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;
final K key;
//可以看到这些都用了volatile修饰
volatile V val;
volatile Node<K,V> next;
}
6、get方法不需要加锁与volatile修饰的哈希桶有关吗?
没有关系。哈希桶 table 用volatile修饰主要是保证在数组扩容的时候保证可见性。
static final class Segment<K,V> extends ReentrantLock implements Serializable {
// 存放数据的桶
transient volatile HashEntry<K,V>[] table;
}
7、ConcurrentHashMap 不支持 key 或者 value 为null 的原因?
我们先来说value 为什么不能为 null ,因为 ConcurrentHashMap 是用于多线程的 ,如果map.get(key)
得到了 null ,无法判断,是映射的value是 null ,还是没有找到对应的key而为 null ,这就有了二义性。
而用于单线程状态的 HashMap 却可以用 containsKey(key) 去判断到底是否包含了这个 null 。
我们用反证法来推理:
假设ConcurrentHashMap 允许存放值为 null 的value,这时有A、B两个线程,线程A调用ConcurrentHashMap .get(key)
方法,返回为 null ,我们不知道这个 null 是没有映射的 null ,还是存的值就是 null 。
假设此时,返回为 null 的真实情况是没有找到对应的key。那么,我们可以用ConcurrentHashMap.containsKey(key)
来验证我们的假设是否成立,我们期望的结果是返回false。
但是在我们调用ConcurrentHashMap .get(key)方法之后,containsKey方法之前,线程B执行了ConcurrentHashMap .put(key, null )
的操作。那么我们调用containsKey方法返回的就是true了,这就与我们的假设的真实情况不符合了,这就有了二义性。
8、ConcurrentHashMap 的并发度是多少?
在JDK1.7中,并发度默认是16,这个值可以在构造函数中设置。如果自己设置了并发度,ConcurrentHashMap 会使用大于等于该值的最小的2的幂指数作为实际并发度,也就是比如你设置的值是17,那么实际并发度是32。
9、ConcurrentHashMap 迭代器是强一致性还是弱一致性?
与HashMap迭代器是强一致性不同,ConcurrentHashMap 迭代器是弱一致性。
ConcurrentHashMap 的迭代器创建后,就会按照哈希表结构遍历每个元素,但在遍历过程中,内部元素可能会发生变化,如果变化发生在已遍历过的部分,迭代器就不会反映出来,而如果变化发生在未遍历过的部分,迭代器就会发现并反映出来,这就是弱一致性。
这样迭代器线程可以使用原来老的数据,而写线程也可以并发的完成改变,更重要的,这保证了多个线程并发执行的连续性和扩展性,是性能提升的关键。
10、JDK1.7与JDK1.8 中ConcurrentHashMap 的区别?
-
数据结构:取消了Segment分段锁的数据结构,取而代之的是数组+链表+红黑树的结构。
-
保证线程安全机制:JDK1.7采用Segment的分段锁机制实现线程安全,其中segment继承自ReentrantLock。JDK1.8 采用CAS+Synchronized保证线程安全。
-
锁的粒度:原来是对需要进行数据操作的Segment加锁,现调整为对每个数组元素加锁(Node)。
-
链表转化为红黑树:定位结点的hash算法简化会带来弊端,Hash冲突加剧,因此在链表节点数量大于8时,会将链表转化为红黑树进行存储。
-
查询时间复杂度:从原来的遍历链表O(n),变成遍历红黑树O(logN)。