STM32--MPU6050与I2C外设

文章目录

  • 前言
  • MPU6050
    • 参数
    • 电路
    • MPU6050框图
  • IIC外设
    • 框图
  • IIC的基本结构
  • 软件IIC实现MPU6050
  • 硬件IIC实现MPU6050

前言

在51单片机专栏中,用过I2C通信来进行实现AT24C02的数据存储;
里面介绍的是利用程序的编程来实现I2C的时序,进而实现AT24C02与单片机之间的关系连接;
本章将介绍使用I2C的硬件外设来实现I2C通信,和介绍MPU6050,利用I2C通信实现STM32对MPU6050的控制.

I2C通信软件实现程序链接入口

MPU6050

MPU6050是一种集成三轴陀螺仪和三轴加速度计的六轴运动处理组件。
可以用来感知物体的旋转和加速度运动,并提供相应的测量数据

在这里插入图片描述

MPU6050采用微机电系统(MEMS)技术,通过测量微小的力和振动来检测物体的运动。其内置的三轴陀螺仪可以测量绕X、Y、Z轴的角速度,而三轴加速度计可以测量物体在X、Y、Z轴上的加速度。通过结合两者的数据,可以获得更准确的运动信息。

MPU6050还具有一个可扩展的数字运动处理器(DMP),可以实现更复杂的运动处理功能。DMP可以通过主要的I2C或SPI端口输出完整的九轴运动融合数据,当连接到三轴磁强计时,可以获得更全面的运动信息。

MPU6050广泛应用于飞行器、机器人、游戏控制器等领域,可以提供准确的姿态感知和运动跟踪功能。它的集成设计减少了封装空间和组合陀螺仪与加速度计时间轴不匹配的问题,使其在各种应用中具有较高的可靠性和性能。

参数

角速度全格感测范围:±250、±500、±1000、±2000°/sec(dps)
可追踪快速和慢速动作

加速度全格感测范围:±2g、±4g、±8g、±16g

产品传输可透过最高至400kHz的IIC

16位ADC采集传感器的模拟信号,量化范围:-32768~32767

I2C从机地址:
1101000(AD0=0) 0x68
1101001(AD0=1)0x69

这里的地址是没有融入读写地址位的,如果融入读写地址位,那么将通过左移的方式,变成11010000,0xD0;11010001,0xD1。

电路

在这里插入图片描述
最右边的是MPU6050的芯片,左下角是8针的排针,左上角是一个低压差线性稳压器。

芯片包括时钟、IIC通信引脚、供电、帧同步等,本章有很多是用不到的。

左下角VCC和GND是引脚供电;SCL和SDA是IIC通信的引脚,在芯片处,SCL和SDA已经内置了两个4.7k的上拉电阻,在接线时,可以直接连接到GPIO口。
XCL和XDA是主机的IIC引脚,目的是为了拓展芯片功能,可拓展磁力计等功能。
AD0是从机地址的最低位,接低电平时,7位从机地址为1101000,接高电平时,7位从机地址就是1101001.这里默认连接上了弱下拉到低电平,引脚悬空时,即为低电平。倘若想变为高电平,可以直接连接VCC,强上拉为高电平。
INT是中断输出引脚,可配置芯片内部一些事件,来触发中断引脚的输出。

左上角LD0是供电的逻辑,MPU6050芯片的VCC供电为2.375~3.46V,属于3.3V的供电设备,为了扩大供电范围,设计者在电路中加入3.3V的稳压器,输入端电压VCC_5V可以在3.3V到5V之间,经过稳压器后即可输出3.3V的电压,一旦3.3V端有电压,指示灯就会亮起。

MPU6050框图

在这里插入图片描述
该图即为芯片的内部结构。

左上角是时钟系统,有时钟输入脚和时钟输出脚。

灰色部分就是芯片的传感器,分别是XYZ轴的加速度计,XYZ轴的陀螺仪。且还内置一个温度传感器,本质上传感器就是可变电阻,所以通过ADC模数转换,就可以产生数据放在数据寄存器中。我们只需要读取寄存器中的数据即可得到测量值。

最左边是用来验证芯片的好坏的,当启动自测后,芯片内部会模拟一个外力施加在传感器上,该数据一般给的比平时大一些。可以用使能自测,读取数据,再使能自测,读取数据,最后数据差称为数据响应,只要数据响应在规定范围内,则表明芯片没问题。

ChargePump为电荷泵,这是一种升压电路,会连接一个电容。
电荷泵与电容并联时,可为电容充电,串联时,那么电荷泵和电容一起为芯片供电,提供比原来大的电压。

右边是通信接口和一些寄存器。
中断状态寄存器,可以控制内部的某些事件到中断引脚的输出;
FIFO是先入先出寄存器,可以对数据流进行缓冲;
配置寄存器,可以对内部电路进行配置。
传感器寄存器,也就是数据寄存器,存储各传感器的数据。
工厂校准,内部的传感器都进行了校准;
数字运动处理器(DMP),这是芯片内部自带的一个姿态解算的硬件算法。

然后就是IIC通信的接口,链接着STM32,下面还有一些是主机的IIC通信接口。通过(SIBM)寄存器选择。

IIC外设

STM32内部集成了硬件I2C收发电路,可以由硬件自动执行时钟生成、起始终止条件生成、应答位收发、数据收发等功能,减轻CPU的负担

支持多主机模型

支持7位/10位地址模式

支持不同的通讯速度,标准速度(高达100 kHz),快速(高达400 kHz)

支持DMA

兼容SMBus协议

STM32F103C8T6 硬件I2C资源:I2C1、I2C2

框图

在这里插入图片描述
SDA接收数据和发送数据;
对于要发送的数据,会从数据寄存器转移到数据移位寄存器中,数据移位寄存器再通过引脚串行发送数据位;
对于要接收的数据,也会先放到数据移位寄存器中,数据寄存器再从移位寄存器中取数据,这样做的目的是为了更好的缓存数据,防止有些数据会丢失。
数据寄存器可以通过写入控制寄存器对应位进行操作。

比较器和地址寄存器是从机模式使用的,STM32的IIC是基于可变多主机模型设计的,当STM32不通信时,可作为从机,可被别人召唤,这时就需要一个地址。
PEC是一个数据校验模块,当发送一个多数据帧时,硬件可以自动执行CRC校验计算,CRC是一种校验算法,会根据前面这些数据,进行各种数据运算,会得到一个字节的校验位,加在数据帧后面;STM32也可以自动对数据帧进行判断,如果数据在传输过程中出错,CRC算法通不过,硬件就会置校验错误标志位。

SCL连接着时钟控制。
SMBALEART是用于SMBus模式的,不使用该模式接口不能使用。

IIC的基本结构

在这里插入图片描述
数据控制器,控制对数据的发送和接收;
时钟控制器,控制对时钟的流动;
再接上GPIO口,最后把开关控制启用,就能实现IIC通信。

软件IIC实现MPU6050

OLED代码链接入口

连接方式:
在这里插入图片描述

利用OLED屏幕显示MPU6050陀螺仪和加速度各轴数据;

IIC.h

#ifndef __I2C_H__
#define __I2C_H__

void I2C_INIT();
void I2C_Start();
void I2C_Stop();
void I2C_SendByte(uint8_t Byte);
uint8_t I2C_ReceiveByte();
void I2C_SendAck(uint8_t AckBit);
uint8_t I2C_ReceiveAck();

#endif

IIC.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"

void I2C_W_SCL(uint8_t BitValue)
{
    GPIO_WriteBit(GPIOB,GPIO_Pin_10,(BitAction)BitValue);
    Delay_us(10); //延迟是让函数有时间反应
}

void I2C_W_SDA(uint8_t BitValue)
{
    GPIO_WriteBit(GPIOB,GPIO_Pin_11,(BitAction)BitValue);
    Delay_us(10); //延迟是让函数有时间反应
}

uint8_t I2C_R_SDA()
{
    uint8_t BitValue;
    BitValue=GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_11);
    Delay_us(10);
    return BitValue;
}

void I2C_INIT()
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_OD; //开漏弱上拉输出
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10 | GPIO_Pin_11;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);
	
	GPIO_SetBits(GPIOB, GPIO_Pin_10 | GPIO_Pin_11);
}

void I2C_Start()
{
    I2C_W_SDA(1);
    I2C_W_SCL(1);
    I2C_W_SDA(0);
    I2C_W_SCL(0);
}

void I2C_Stop()
{
    I2C_W_SDA(0);
    I2C_W_SCL(1);
    I2C_W_SDA(1);
}

void I2C_SendByte(uint8_t Byte)
{
    uint8_t i;
    for(i=0;i<8;i++)
    {
        I2C_W_SDA(Byte&(0x80>>i));
        //高电平锁存,从机读取
        I2C_W_SCL(1);
        I2C_W_SCL(0);
    }
}

uint8_t I2C_ReceiveByte()
{
    uint8_t i,Byte=0x00;
    I2C_W_SDA(1); //主机释放SDA
    for(i=0;i<8;i++)
    {
        I2C_W_SCL(1); //SCL高电平期间主机读取从机发送的数据
        if(I2C_R_SDA()==1){Byte|=(0x80>>i);}
        I2C_W_SCL(0);
    }
    return Byte;
}

void I2C_SendAck(uint8_t AckBit)
{
    I2C_W_SDA(AckBit);
    //高电平锁存,从机读取
    I2C_W_SCL(1);
    I2C_W_SCL(0);
}

uint8_t I2C_ReceiveAck()
{
    uint8_t AckBit;
    I2C_W_SDA(1); //主机释放SDA
    I2C_W_SCL(1); //SCL高电平期间主机读取从机发送的数据
    AckBit=I2C_R_SDA(); 
    I2C_W_SCL(0);
    return AckBit;
}

这部分实现的是IIC的六个主要部分的代码,与51单片机上的时序基本一致;在STM32上,是利用GPIO口来实现高低电平的输入输出。

输出模式用开漏输出,当输出低电平时,电路会强下拉,变为低电平;
当输出为高电平时,为弱上拉,一旦有下拉电平输入,就会变成低电平。

该模式不止可以实现输出,也可以实现对IIC的接收,当输入为1时,在SCL高电平时STM32会读取;当输入为0时,在SCL高电平STM32会读取.

MPU6050_tag.h

#ifndef __MPU6050_REG_H
#define __MPU6050_REG_H

#define	MPU6050_SMPLRT_DIV		0x19
#define	MPU6050_CONFIG			0x1A
#define	MPU6050_GYRO_CONFIG		0x1B
#define	MPU6050_ACCEL_CONFIG	0x1C

#define	MPU6050_ACCEL_XOUT_H	0x3B
#define	MPU6050_ACCEL_XOUT_L	0x3C
#define	MPU6050_ACCEL_YOUT_H	0x3D
#define	MPU6050_ACCEL_YOUT_L	0x3E
#define	MPU6050_ACCEL_ZOUT_H	0x3F
#define	MPU6050_ACCEL_ZOUT_L	0x40
#define	MPU6050_TEMP_OUT_H		0x41
#define	MPU6050_TEMP_OUT_L		0x42
#define	MPU6050_GYRO_XOUT_H		0x43
#define	MPU6050_GYRO_XOUT_L		0x44
#define	MPU6050_GYRO_YOUT_H		0x45
#define	MPU6050_GYRO_YOUT_L		0x46
#define	MPU6050_GYRO_ZOUT_H		0x47
#define	MPU6050_GYRO_ZOUT_L		0x48

#define	MPU6050_PWR_MGMT_1		0x6B
#define	MPU6050_PWR_MGMT_2		0x6C
#define	MPU6050_WHO_AM_I		0x75

#endif

MPU6050.h

#ifndef __MPU6050_H__
#define __MPU6050_H__


void MPU6050_Init();
uint8_t MPU6050_GetID();
void MPU6050_GetData(int16_t* AccX,int16_t* AccY,int16_t* AccZ,int16_t* GyroX,int16_t* GyroY,int16_t* GyroZ);

#endif

MPU6050.c

#include "stm32f10x.h"                  // Device header
#include "I2C.h"
#include "MPU6050_rag.h"

#define MPU6050_ADDRESS 0xD0

void MPU6050_WriteReg(uint8_t RegAddress,uint8_t Data)
{
    I2C_Start();
    I2C_SendByte(MPU6050_ADDRESS);
    I2C_ReceiveAck();
    I2C_SendByte(RegAddress);
    I2C_ReceiveAck();
    I2C_SendByte(Data);
    I2C_ReceiveAck();
    I2C_Stop();
    
}

uint8_t MPU6050_ReadReg(uint8_t RegAddress)
{
    uint8_t Data;
    
    I2C_Start();
    I2C_SendByte(MPU6050_ADDRESS);
    I2C_ReceiveAck();
    I2C_SendByte(RegAddress);
    I2C_ReceiveAck();
    
    I2C_Start();
    I2C_SendByte(MPU6050_ADDRESS|0x01);
    I2C_ReceiveAck();
    Data=I2C_ReceiveByte();
    I2C_SendAck(1); //主机不应答,主机收回主动权,让从机停止发送数据字节
    I2C_Stop();
    
    return Data;
    
    
}

void MPU6050_Init()
{
   I2C_INIT();
    MPU6050_WriteReg(MPU6050_PWR_MGMT_1,0x01); //解除睡眠,选择陀螺仪时钟
    MPU6050_WriteReg(MPU6050_PWR_MGMT_1,0x00); //6个轴均不待机
    MPU6050_WriteReg(MPU6050_SMPLRT_DIV,0x09); //采样分频为10
    MPU6050_WriteReg(MPU6050_CONFIG, 0x06);  //滤波参数给最大
    MPU6050_WriteReg(MPU6050_GYRO_CONFIG, 0x18); //最大陀螺仪量程
    MPU6050_WriteReg(MPU6050_ACCEL_CONFIG, 0x18); //最大加速度量程

}

uint8_t MPU6050_GetID()
{
    return MPU6050_ReadReg(MPU6050_WHO_AM_I);
}

void MPU6050_GetData(int16_t* AccX,int16_t* AccY,int16_t* AccZ,int16_t* GyroX,int16_t* GyroY,int16_t* GyroZ)
{
    uint8_t DataH,DataL;
    
    DataH=MPU6050_ReadReg(MPU6050_ACCEL_XOUT_H);
    DataL=MPU6050_ReadReg(MPU6050_ACCEL_XOUT_L);
    *AccX=(DataH<<8)|DataL;
    
    DataH=MPU6050_ReadReg(MPU6050_ACCEL_YOUT_H);
    DataL=MPU6050_ReadReg(MPU6050_ACCEL_YOUT_L);
    *AccY=(DataH<<8)|DataL;
    
    DataH=MPU6050_ReadReg(MPU6050_ACCEL_ZOUT_H);
    DataL=MPU6050_ReadReg(MPU6050_ACCEL_ZOUT_L);
    *AccZ=(DataH<<8)|DataL;
    
    DataH = MPU6050_ReadReg(MPU6050_GYRO_XOUT_H);
	DataL = MPU6050_ReadReg(MPU6050_GYRO_XOUT_L);
	*GyroX = (DataH << 8) | DataL;
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_YOUT_H);
	DataL = MPU6050_ReadReg(MPU6050_GYRO_YOUT_L);
	*GyroY = (DataH << 8) | DataL;
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_ZOUT_H);
	DataL = MPU6050_ReadReg(MPU6050_GYRO_ZOUT_L);
	*GyroZ = (DataH << 8) | DataL;
    
    

}

第一个代码块是对MPU6050一些寄存器地址的宏定义,主要有采样分频寄存器、陀螺仪配置寄存器、加速度配置寄存器、加速度数据寄存器、陀螺仪数据寄存器、状态寄存器1/2、地址寄存器。

对于MPU6050的读写,采用了IIC通信时序实现
写时序:在这里插入图片描述
读时序:
在这里插入图片描述
数据存储器为16位存储;

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MPU6050.h"

uint8_t ID;
int16_t AX,AY,AZ,GX,GY,GZ;

int main()
{
	OLED_Init();
    MPU6050_Init();
    
    OLED_ShowString(1,1,"ID:");
    ID=MPU6050_GetID();
    OLED_ShowHexNum(1,4,ID,2);
    
    while(1)
    {
        MPU6050_GetData(&AX,&AY,&AZ,&GX,&GY,&GZ);
        OLED_ShowSignedNum(2,1,AX,5);
        OLED_ShowSignedNum(3,1,AY,5);
        OLED_ShowSignedNum(4,1,AZ,5);
        OLED_ShowSignedNum(2,8,GX,5);
        OLED_ShowSignedNum(3,8,GY,5);
        OLED_ShowSignedNum(4,8,GZ,5);
        
    }
}

硬件IIC实现MPU6050

连接方式与软件的保持一致。由于是硬件外设,需要注意引脚有没有支持该IIC功能。
在这里插入图片描述
对于硬件外设,我们只需要对软件实现部分的IIC通信进行修改。
MPU6050.c

#include "stm32f10x.h"                  // Device header
#include "MPU6050_rag.h"

#define MPU6050_ADDRESS 0xD0

void MPU6050_WaitEvent(I2C_TypeDef* I2Cx, uint32_t I2C_EVENT)
{
	uint32_t Timeout;
	Timeout = 10000;
	while (I2C_CheckEvent(I2Cx, I2C_EVENT) != SUCCESS)
	{
		Timeout --;
		if (Timeout == 0)
		{
			break;
		}
	}
}

void MPU6050_WriteReg(uint8_t RegAddress,uint8_t Data)
{
    
    
    I2C_GenerateSTART(I2C2,ENABLE); //S
    MPU6050_WaitEvent(I2C2,I2C_EVENT_MASTER_MODE_SELECT); //EV5
    
    I2C_Send7bitAddress(I2C2,MPU6050_ADDRESS,I2C_Direction_Transmitter);
    MPU6050_WaitEvent(I2C2,I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED); //EV6
    
    I2C_SendData(I2C2,RegAddress);
    MPU6050_WaitEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTING); //EV8
    
    I2C_SendData(I2C2,Data);
    MPU6050_WaitEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTED); //EV8_2
    
    I2C_GenerateSTOP(I2C2,ENABLE);
}

uint8_t MPU6050_ReadReg(uint8_t RegAddress)
{
    uint8_t Data;
    
    I2C_GenerateSTART(I2C2,ENABLE); //S
    MPU6050_WaitEvent(I2C2,I2C_EVENT_MASTER_MODE_SELECT); //EV5
    
    I2C_Send7bitAddress(I2C2,MPU6050_ADDRESS,I2C_Direction_Transmitter); 
    MPU6050_WaitEvent(I2C2,I2C_EVENT_MASTER_TRANSMITTER_MODE_SELECTED); //EV6
    
    I2C_SendData(I2C2,RegAddress); 
    MPU6050_WaitEvent(I2C2,I2C_EVENT_MASTER_BYTE_TRANSMITTED);
    I2C_GenerateSTART(I2C2,ENABLE); //S
    MPU6050_WaitEvent(I2C2,I2C_EVENT_MASTER_MODE_SELECT); //EV5
    
    I2C_Send7bitAddress(I2C2,MPU6050_ADDRESS,I2C_Direction_Receiver);
    MPU6050_WaitEvent(I2C2,I2C_EVENT_MASTER_RECEIVER_MODE_SELECTED); //EV6
    
    //EV7_1
    I2C_AcknowledgeConfig(I2C2,DISABLE);//应答位禁用    
    I2C_GenerateSTOP(I2C2,ENABLE); //P
    MPU6050_WaitEvent(I2C2,I2C_EVENT_MASTER_BYTE_RECEIVED); //EV7
    
    Data=I2C_ReceiveData(I2C2);
    
    I2C_AcknowledgeConfig(I2C2,ENABLE); //应答位启用
    
    return Data;
    
    
}

void MPU6050_Init()
{
    RCC_APB1PeriphClockCmd(RCC_APB1Periph_I2C2,ENABLE);
    RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB,ENABLE);
    
    GPIO_InitTypeDef GPIO_InitStructure;
    GPIO_InitStructure.GPIO_Mode=GPIO_Mode_AF_OD; //复用开漏输出
    GPIO_InitStructure.GPIO_Pin=GPIO_Pin_10|GPIO_Pin_11;
    GPIO_InitStructure.GPIO_Speed=GPIO_Speed_50MHz;
    GPIO_Init(GPIOB,&GPIO_InitStructure);
    
    I2C_InitTypeDef I2C_InitStructure;
    I2C_InitStructure.I2C_Ack=I2C_Ack_Enable; //启用应答位
    I2C_InitStructure.I2C_AcknowledgedAddress=I2C_AcknowledgedAddress_7bit; //确认地址模式
    I2C_InitStructure.I2C_ClockSpeed=50000; //时钟频率
    I2C_InitStructure.I2C_DutyCycle=I2C_DutyCycle_2; //占空比
    I2C_InitStructure.I2C_Mode=I2C_Mode_I2C; //模式选择
    I2C_InitStructure.I2C_OwnAddress1=0x00;
    I2C_Init(I2C2,&I2C_InitStructure);
    
    I2C_Cmd(I2C2,ENABLE);
    
    MPU6050_WriteReg(MPU6050_PWR_MGMT_1,0x01); //解除睡眠,选择陀螺仪时钟
    MPU6050_WriteReg(MPU6050_PWR_MGMT_1,0x00); //6个轴均不待机
    MPU6050_WriteReg(MPU6050_SMPLRT_DIV,0x09); //采样分频为10
    MPU6050_WriteReg(MPU6050_CONFIG, 0x06);  //滤波参数给最大
    MPU6050_WriteReg(MPU6050_GYRO_CONFIG, 0x18); //最大陀螺仪量程
    MPU6050_WriteReg(MPU6050_ACCEL_CONFIG, 0x18); //最大加速度量程

}

uint8_t MPU6050_GetID()
{
    return MPU6050_ReadReg(MPU6050_WHO_AM_I);
}

void MPU6050_GetData(int16_t* AccX,int16_t* AccY,int16_t* AccZ,int16_t* GyroX,int16_t* GyroY,int16_t* GyroZ)
{
    uint8_t DataH,DataL;
    
    DataH=MPU6050_ReadReg(MPU6050_ACCEL_XOUT_H);
    DataL=MPU6050_ReadReg(MPU6050_ACCEL_XOUT_L);
    *AccX=(DataH<<8)|DataL;
    
    DataH=MPU6050_ReadReg(MPU6050_ACCEL_YOUT_H);
    DataL=MPU6050_ReadReg(MPU6050_ACCEL_YOUT_L);
    *AccY=(DataH<<8)|DataL;
    
    DataH=MPU6050_ReadReg(MPU6050_ACCEL_ZOUT_H);
    DataL=MPU6050_ReadReg(MPU6050_ACCEL_ZOUT_L);
    *AccZ=(DataH<<8)|DataL;
    
    DataH = MPU6050_ReadReg(MPU6050_GYRO_XOUT_H);
	DataL = MPU6050_ReadReg(MPU6050_GYRO_XOUT_L);
	*GyroX = (DataH << 8) | DataL;
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_YOUT_H);
	DataL = MPU6050_ReadReg(MPU6050_GYRO_YOUT_L);
	*GyroY = (DataH << 8) | DataL;
	
	DataH = MPU6050_ReadReg(MPU6050_GYRO_ZOUT_H);
	DataL = MPU6050_ReadReg(MPU6050_GYRO_ZOUT_L);
	*GyroZ = (DataH << 8) | DataL;
    
    

}

这里的初始化,GPIO引脚需要用到复用模式,因为IIC外设是片上外设;
接收数据和发送数据要根据STM32的要求,
在这里插入图片描述
根据响应事件来确定事件的产生效果,所以会在每条条件后执行响应事件。
对于所给的库函数,有些事件(EVX)没有提供,一些可以省略,一些需要对程序进行一定的整改。
如上面的EV8_1,确保数据寄存器和移位寄存器为空,在我们一开始调用时,就为空,所以可以对它进行忽略。
在这里插入图片描述
接收数据的EV7_1,描述到,设置应答位为无应答,和Stop请求;对于连续接收的数据,需要在最后一个数据之前进行EV7_1响应,在进行EV7_1响应时,因为最后一个数据会先放到移位寄存器中,最后第二个会在数据寄存器中。需要提前STOP请求,表示,接收结束。
而在程序中,我们只是对一个数据进行接收,并没有连续接收数据,但道理一样,需要提前STOP请求。而在库函数中刚好没有对应的函数,需要自己禁用ACK和STOP请求。

上软下硬:
在这里插入图片描述

这时软件和硬件的波形对比,会发现,在应答位硬件会更快应答,只要到到SCL下降沿和SDA上升沿,就会产生应答。这就是硬件的优势;

在软件中,由于是同步时序,对于时间没有严格要求,只要在对应时间完成对应的电平操作即可,所以IIC通信才可以实现软件编程。而软件编程相对来说,也比较容易理解。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/85337.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

学习设计模式之适配器模式,但是宝可梦

前言 作者在准备秋招中&#xff0c;学习设计模式&#xff0c;做点小笔记&#xff0c;用宝可梦为场景举例&#xff0c;有错误欢迎指出。 适配器模式 意图&#xff1a;将一个类的接口转换成客户希望的另一个接口 主要解决&#xff1a;把现有对象放到新环境里&#xff0c;而新…

【vue3+ts项目】配置eslint校验代码工具,eslint+prettier+stylelint

1、运行好后自动打开浏览器 package.json中 vite后面加上 --open 2、安装eslint npm i eslint -D3、运行 eslint --init 之后&#xff0c;回答一些问题&#xff0c; 自动创建 .eslintrc 配置文件。 npx eslint --init回答问题如下&#xff1a; 使用eslint仅检查语法&…

非平衡数据处理过程中可以尝试的三个额外措施

非平衡数据处理过程中可以尝试的三个额外措施 非平衡数据集是医学数据集中常见的一种数据形式&#xff0c;指的是二分类结局变量中一种类别的数量远于另一类别的数量的情形&#xff0c;比如以远处转移或者死亡作为结局变量&#xff0c;远处转移或者死亡类别的数量往往远小于对照…

Qt应用开发(基础篇)——文本编辑窗口 QTextEdit

一、前言 QTextEdit类继承于QAbstractScrollArea&#xff0c;QAbstractScrollArea继承于QFrame&#xff0c;用来显示富文本和纯文本的窗口部件。 框架类 QFramehttps://blog.csdn.net/u014491932/article/details/132188655滚屏区域基类 QAbstractScrollAreahttps://blog.csdn…

【计算机网络八股】计算机网络(一)

目录 计算机网络的各层协议及作用&#xff1f;TCP和UDP的区别&#xff1f;UDP 和 TCP 对应的应用场景是什么&#xff1f;详细介绍一下 TCP 的三次握手机制&#xff1f;为什么需要三次握手&#xff0c;而不是两次&#xff1f;为什么要三次握手&#xff0c;而不是四次&#xff1f…

【C++】使用Windows操作系统的API在控制台输出绿色的文本

2023年8月21日&#xff0c;周一下午 #include <Windows.h> #include <iostream>int main() {HANDLE hConsole GetStdHandle(STD_OUTPUT_HANDLE);// 设置文本颜色为绿色SetConsoleTextAttribute(hConsole, FOREGROUND_GREEN); std::cout<<"This text i…

小程序中的页面配置和网络数据请求

页面配置文件和常用的配置项 1.在msg.json中配置window中的颜色和背景色 "navigationBarBackgroundColor": "#efefef","navigationBarTextStyle": "black" 2.可以看到home中的没有发生变化但是msg的发生变化了&#xff0c;这个和前面的…

Android Hook技术学习——常见的hook技术方案

一、前言 最近一段时间在研究Android加壳和脱壳技术&#xff0c;其中涉及到了一些hook技术&#xff0c;于是将自己学习的一些hook技术进行了一下梳理&#xff0c;以便后面回顾和大家学习。 本文第二节主要讲述编译原理&#xff0c;了解编译原理可以帮助进一步理解hook技术 本文…

220V转5V芯片三脚芯片-AH8652

220V转5V芯片三脚芯片是一种非常常见的电源管理芯片&#xff0c;它通常被用于将高压交流输入转为稳定的直流5V输出。芯片型号AH8652是一款支持交流40V-265V输入范围的芯片&#xff0c;采用了SOT23-3三脚封装。该芯片内部集成了650V高压MOS管&#xff0c;能够稳定地将输入电压转…

JVM理论知识

一、JVM内存结构 java的内存模型主要分为5个部分&#xff0c;分别是&#xff1a;JVM堆、JVM栈、本地栈、方法区还有程序计数器&#xff0c;他们的用途分别是&#xff1a; JVM堆&#xff1a;新建的对象都会放在这里&#xff0c;他是JVM中所占内存最大的区域。他又分为新生区还…

十、RabbitMQ集群

一、clustering 1、 使用集群的原因 单台RabbitMQ遇到内存崩溃、机器故障等情况会导致服务不可用单台RabbitMQ只能满足每秒1000条的消息吞吐量 2、搭建步骤 1、准备三台虚拟机 2、修改3台机器的主机名称 分别为node1、node2、node3 vi /etc/hostname 3、配置节点的hosts文…

PostgreSQL父子建表查询所有的子数据-利用自定义函数查询

pgsql 函数查询代码 select find_space_tree_list_by_nodeid(1,1) 查询结果示意图 获取子集函数代码 CREATE OR REPLACE FUNCTION "public"."find_space_tree_list_by_nodeid"("nodeid" varchar, "viewid" varchar)RETURNS "…

使用StorageClass动态创建pv

rook-ceph安装部署到位后&#xff0c;就可以开始来尝试使用StorageClass来动态创建pv了。 有状态的中间件在kubernetes上落地基本上都会用到StorageClass来动态创建pv&#xff08;对于云上应用没有那么多烦恼&#xff0c;云硬盘很好用&#xff0c;但是对于自己学习和练习来说还…

DataWhale 机器学习夏令营第三期

DataWhale 机器学习夏令营第二期 学习记录一 (2023.08.18)1.赛题理解2.缺失值分析3. 简单特征提取4. 数据可视化离散变量离散变量分布分析 DataWhale 机器学习夏令营第三期 ——用户新增预测挑战赛 学习记录一 (2023.08.18) 已跑通baseline&#xff0c;换为lightgbm基线&#…

SpringCloud Ribbon中的7种负载均衡策略

SpringCloud Ribbon中的7种负载均衡策略 Ribbon 介绍负载均衡设置7种负载均衡策略1.轮询策略2.权重策略3.随机策略4.最小连接数策略5.重试策略6.可用性敏感策略7.区域敏感策略 总结 负载均衡通器常有两种实现手段&#xff0c;一种是服务端负载均衡器&#xff0c;另一种是客户端…

无涯教程-PHP.INI File Configuration函数

PHP配置文件php.ini是影响PHP功能的最终且最直接的方法。每次初始化PHP时都会读取php.ini文件。换句话说,无论是模块版本的httpd重新启动还是CGI版本的每次脚本执行都重新启动。如果未显示您的更改,请记住停止并重新启动httpd。 该配置文件已注释完整。键区分大小写,关键字值不…

使用mysql:5.6和 owncloud 镜像,构建一个个人网盘

一.拉取镜像 docker pull mysql:5.7 docker pull owncloud 二.创建容器 1.MySQL容器 docker run -d --name db1 -p 3306:3306 -e MYSQL_ROOT_PASSWORD123456. -e MYSQL_DATABASEowncloud -e MYSQL_USERowncloud -e MYSQL_PASSWORDowncloud mysql:5.7 docker run: 创建和运行…

中英双语对话大语言模型:ChatGLM-6B

介绍 ChatGLM-6B 是一个开源的、支持中英双语的对话语言模型&#xff0c;基于 General Language Model (GLM) 架构&#xff0c;具有 62 亿参数。结合模型量化技术&#xff0c;用户可以在消费级的显卡上进行本地部署&#xff08;INT4 量化级别下最低只需 6GB 显存&#xff09;。…

【Kubernetes】Rancher管理集群

目录 1、安装 rancher 2、登录 Rancher 平台 3、Rancher 管理已存在的 k8s 集群 4、Rancher 部署监控系统 5、使用 Rancher 仪表盘管理 k8s 集群 以创建 nginx 服务为例 创建名称空间 namespace 创建 Deployment 资源 创建 service 1、安装 rancher 在 所有 node 节点下…