一文详解4种聚类算法及可视化(Python)

在这篇文章中,基于20家公司的股票价格时间序列数据。根据股票价格之间的相关性,看一下对这些公司进行聚类的四种不同方式。

苹果(AAPL),亚马逊(AMZN),Facebook(META),特斯拉(TSLA),Alphabet(谷歌)(GOOGL),壳牌(SHEL),Suncor能源(SU),埃克森美孚公司(XOM),Lululemon(LULU),沃尔玛(WMT),Carters(CRI)、 Childrens Place (PLCE), TJX Companies (TJX), Victoria’s Secret & Co (VSCO), Macy’s (M), Wayfair (W), Dollar Tree (DLTR), CVS Caremark (CVS), Walgreen (WBA), Curaleaf Holdings Inc. (CURLF)

我们的DataFrame df_combined,包含上述公司413天的股票价格,没有遗漏数据。

目标

我们的目标是根据相关性对这些公司进行分组,并检查这些分组的有效性。例如,苹果、亚马逊、谷歌和Facebook通常被视为科技股,而Suncor和Exxon被视为石油和天然气股。我们将检查我们是否可以得到这些分类,只使用这些公司的股票价格之间的相关性。

使用相关性来对这些公司进行分类,而不是使用股票价格,如果使用股票价格,具有相似股票价格的公司将被集中在一起。但在这里,我们想根据股票价格的行为来对公司进行分类。实现这一目标的一个简单方法是使用股票价格之间的相关性。

技术交流

技术要学会分享、交流,不建议闭门造车。一个人可以走的很快、一堆人可以走的更远。

相关文件及代码都已上传,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友。

方式①、添加微信号:dkl88194,备注:来自CSDN + 加群
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

最佳集群数量

寻找集群的数量是一个自身的问题。有一些方法,如elbow方法,可以用来寻找最佳的集群数量。然而,在这项工作中,尝试将这些公司分成4个集群。理想情况下,这四个群组必须是科技股、石油和天然气股、零售股和其他股票。

首先获得我们所拥有的数据框架的相关矩阵。

correlation_mat=df_combined.corr()

定义一个效用函数来显示集群和属于该集群的公司。

# 用来打印公司名称和它们所分配的集群的实用函数
def print_clusters(df_combined,cluster_labels):
  cluster_dict = {}
  for i, label in enumerate(cluster_labels):
      if label not in cluster_dict:
          cluster_dict[label] = []
      cluster_dict[label].append(df_combined.columns[i])

  # 打印出每个群组中的公司 -- 建议关注@公众号:数据STUDIO 定时推送更多优质内容
  for cluster, companies in cluster_dict.items():
      print(f"Cluster {cluster}: {', '.join(companies)}")

方法1:K-means聚类法

K-means聚类是一种流行的无监督机器学习算法,用于根据特征的相似性将相似的数据点分组。该算法迭代地将每个数据点分配给最近的集群中心点,然后根据新分配的数据点更新中心点,直到收敛。我们可以用这个算法根据相关矩阵对我们的数据进行聚类。

from sklearn.cluster import KMeans

# Perform k-means clustering with four clusters
clustering = KMeans(n_clusters=4, random_state=0).fit(correlation_mat)

# Print the cluster labels
cluster_labels=clustering.labels_
print_clusters(df_combined,cluster_labels)

图片

k-means聚类的结果

正如预期的那样,亚马逊、Facebook、特斯拉和Alphabet被聚集在一起,石油和天然气公司也被聚集在一起。此外,沃尔玛和MACYs也被聚在一起。然而,我们看到一些科技股,如苹果与沃尔玛聚集在一起。

方法2:聚和聚类法Agglomerative Clustering

聚合聚类是一种分层聚类算法,它迭代地合并类似的聚类以形成更大的聚类。该算法从每个对象的单独聚类开始,然后在每一步将两个最相似的聚类合并。

from sklearn.cluster import AgglomerativeClustering

# 进行分层聚类
clustering = AgglomerativeClustering(n_clusters=n_clusters, 
                                     affinity='precomputed', 
                                     linkage='complete'
                                    ).fit(correlation_mat)

# Display the cluster labels
print_clusters(df_combined,clustering.labels_)

图片

分层聚类的结果

这些结果与我们从k-means聚类得到的结果略有不同。我们可以看到一些石油和天然气公司被放在了不同的聚类中。

方法3:亲和传播聚类法 AffinityPropagation

亲和传播聚类是一种聚类算法,不需要事先指定聚类的数量。它的工作原理是在成对的数据点之间发送消息,让数据点自动确定聚类的数量和最佳聚类分配。亲和传播聚类可以有效地识别数据中的复杂模式,但对于大型数据集来说,计算成本也很高。

from sklearn.cluster import AffinityPropagation

# 用默认参数进行亲和传播聚类
clustering = AffinityPropagation(affinity='precomputed').fit(correlation_mat)

# Display the cluster labels
print_clusters(df_combined,clustering.labels_)

图片

亲和传播聚类的结果

有趣的是,这个方法发现四个聚类是我们数据的最佳聚类数量。此外,我们可以观察到,石油和天然气公司被聚在一起,一些科技公司也被聚在一起。

方法4:DBSCAN聚类法

DBSCAN是一种基于密度的聚类算法,它将那些紧密排列在一起的点聚在一起。它不需要事先指定聚类的数量,而且可以识别任意形状的聚类。该算法对数据中的离群值和噪声具有鲁棒性,可以自动将它们标记为噪声点。

from sklearn.cluster import DBSCAN

# Removing negative values in correlation matrix
correlation_mat_pro = 1 + correlation_mat

# Perform DBSCAN clustering with eps=0.5 and min_samples=5
clustering = DBSCAN(eps=0.5, min_samples=5, metric='precomputed').fit(correlation_mat_pro)

# Print the cluster labels
print_clusters(df_combined,clustering.labels_)

图片

DBScan聚类的结果

在这里,与基于亲和力的聚类不同,DBScan方法将5个聚类确定为最佳数量。还可以看出,有些集群只有1或2家公司。

可视化

同时检查上述四种聚类方法的结果,以深入了解它们的性能,可能是有用的。最简单的方法是使用热图,公司在X轴上,聚类在Y轴上。

def plot_cluster_heatmaps(cluster_results, companies):

    # 从字典中提取key和value
    methods = list(cluster_results.keys())
    labels = list(cluster_results.values())

    # 定义每个方法的热图数据
    heatmaps = []
    for i in range(len(methods)):
        heatmap = np.zeros((len(np.unique(labels[i])), len(companies)))
        for j in range(len(companies)):
            heatmap[labels[i][j], j] = 1
        heatmaps.append(heatmap)

    # Plot the heatmaps in a 2x2 grid
    fig, axs = plt.subplots(nrows=2, ncols=2, figsize=(12, 12))

    for i in range(len(methods)):
        row = i // 2
        col = i % 2
        sns.heatmap(heatmaps[i], cmap="Blues", annot=True, fmt="g", xticklabels=companies, ax=axs[row, col])
        axs[row, col].set_title(methods[i])

    plt.tight_layout()
    plt.show()

companies=df_combined.columns
plot_cluster_heatmaps(cluster_results, companies)

图片

所有四种方法的聚类结果

然而,当试图比较多种聚类算法的结果时,上述的可视化并不是很有帮助。找到一个更好的方法来表示这个图将会很有帮助。

结论

在这篇文章中,我们探讨了四种不同的方法,根据20家公司的股票价格之间的相关性来进行聚类。其目的是以反映这些公司的行为而不是其股票价格的方式对其进行聚类。尝试了K-means聚类、Agglomerative聚类、Affinity Propagation聚类和DBSCAN聚类方法,每种方法都有自己的优点和缺点。结果显示,这四种方法都能以符合其行业或部门的方式对公司进行聚类,而一些方法的计算成本比其他方法更高。基于相关性的聚类方法为基于股票价格的聚类方法提供了一个有用的替代方法,可以根据公司的行为而不是股票价格来聚类。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/85039.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Java】Java如何生成随机数?

文章目录 前言一、Random类介绍二、Random类生成随机数1.生成随机数2.nextInt()方法 三、使用场景四、官方提示总结 前言 我们在学习 Java 基础时就知道可以生成随机数,可以为我们枯燥的学习增加那么一丢丢的乐趣。本文就来介绍 Java 随机数。 一、Random类介绍 …

docker的资源控制及docker数据管理

文章目录 docker的资源控制及docker数据管理一.docker的资源控制1.CPU 资源控制1.1 资源控制工具1.2 cgroups有四大功能1.3 设置CPU使用率上限1.4 进行CPU压力测试1.5 设置50%的比例分配CPU使用时间上限1.6 设置CPU资源占用比(设置多个容器时才有效)1.6.…

合宙Air724UG LuatOS-Air LVGL API--简介

为何是 LVGL LVGL 是一个开源的图形库,它提供了创建嵌入式 GUI 所需的一切,具有易于使用的图形元素、漂亮的视觉效果和低内存占用的特点。 LVGL特点: 强大的 控件 :按钮、图表、列表、滑动条、图像等 高级图形引擎:动…

【Visual Studio】生成.i文件

环境 VS版本:VS2013 问题 如何生成.i预编译文件? 步骤 1、打开VS项目属性,打开C/C\预处理器页面,【预处理到文件】选择是,开启。 2、生成文件如下。 3、正常编译需要关闭此选项。

ORB-SLAM2学习笔记9之图像帧Frame

文章目录 0 引言1 Frame类1.1 构造和重载函数1.1.1 双目相机1.1.2 RGBD相机1.1.3 单目相机 1.2 成员函数1.2.1 特征点去畸变1.2.2 特征点网格分配1.2.3 双目匹配1.2.4 RGBD相机深度计算 1.3 成员变量 2 Frame类的用途 0 引言 ORB-SLAM2学习笔记7详细了解了System主类和多线程和…

安卓图形显示系统

Android图形显示系统 Android图形显示系统是Android比较重要的一个子系统,和很多其他子系统的关联紧密。 Android图形系统比较复杂,这里我们从整体上理一遍,细节留待后期再去深入。Android图形系统主要包括以下几个方面: - 渲染…

Shell编程及自动化运维实现

Linux Shell编程及自动化运维实现 变量 Linux Shell编程及自动化运维实现 判断 Linux Shell编程及自动化运维实现 循环 Linux Shell编程及自动化运维实现 数组和函数 Linux Shell编程及自动化运维实现 三剑客 Linux Shell编程及自动化运维实现 综合实战 什么是…

API 接口选择那个?RESTful、GraphQL、gRPC、WebSocket、Webhook

大家好,我是比特桃。目前我们的生活紧紧地被大量互联网服务所包围,互联网上每天都有数百亿次API调用。API 是两个设备相互通讯的一种方式,人们在手机上每次指尖的悦动,背后都是 API 接口的调用。 本文将列举常见的一些 API 接口&…

code论坛系统测试

目录 一 项目介绍**项目名称****项目介绍****项目功能****项目展示** 二 测试用例设计和功能测试1.测试用例设计**①登录页面****②注册页面****③首页****④发布帖子页面****⑤修改个人信息页面** 2.功能测试环境3.实际执行功能测试的部分操作**①登录页面****②注册页面****③…

ps怎么布尔运算多个图层合并?

我们经常使用Photoshop制作大型海报类,也可以用ps进行一些简单icon小图标的制作,这些icon图标多数应用在工具按钮上,比较小巧美观。但是对于ps对图形的操作经常会用到布尔运算的使用,今天小编就给大家详细讲解下ps布尔运算多个图层…

C语言和JavaScript中的默认排序行为对比

前言 今天在js里使用sort时遇见了一个不理解的现象 即使用sort默认排序后 9 从排序前的第一位被排到了最后一位.一开始我对js sort的理解和c一样,然后通过查阅后发现并不是这样. 正文 排序是一项常见而重要的操作。不同的编程语言提供了不同的排序函数&#xf…

常见的网络设备有哪些?分别有什么作用?

个人主页:insist--个人主页​​​​​​ 本文专栏:网络基础——带你走进网络世界 本专栏会持续更新网络基础知识,希望大家多多支持,让我们一起探索这个神奇而广阔的网络世界。 目录 一、网络设备的概述 二、常见的网络设备 1、…

华星时空展锐芯片5g随身WiFi改串教程

前段时间入手了一个华正易尚,发现插手机卡可以用,插微闯移植卡直接没网,于是研究出展锐改串的教程分享给大家 ⭐注意:理论上所有的展锐芯片棒子都可以用,至于电池机请自行测试 话不多说,教程开始: 1.下载展锐AT改串驱…

Lnton羚通算法算力云平台如何在OpenCV-Python中使用cvui库创建复选框

CVUI 之 复选框 Python import numpy as np import cv2 import cvuidef checkbox_test():WINDOW_NAME Checkbox-Testchecked [False]# 创建画布frame np.zeros((300, 400, 3), np.uint8)# 初始化窗口cvui.init(WINDOW_NAME)while True:# 画布填色frame[:] (100, 200, 100…

Python学习日志(二)

数据类型转换 num_strstr(11)# 整数转换为字符串 print(type(num_str), num_str) 输出结果为&#xff1a; <class str> 11 类型转换成功&#xff0c;并且原本内容没有发生变化。 float_strstr(13.14)#小数转字符串 print(type(float_str),float_str) 同理&#xff0c;…

变动的Python爬虫实现

在电商时代&#xff0c;了解商品价格的变动对于购物者和卖家来说都非常重要。本文将分享一种基于Python的实时监控电商平台商品价格变动的爬虫实现方法。通过本文的解决方案和代码示例&#xff0c;您将能够轻松监控商品价格&#xff0c;并及时做出决策。 一、了解需求和目标 在…

Python将网络文件下载到本地

Python将网络文件下载到本地 前言相关介绍Python将网络文件下载到本地 前言 由于本人水平有限&#xff0c;难免出现错漏&#xff0c;敬请批评改正。更多精彩内容&#xff0c;可点击进入Python日常小操作专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看基于DETR的人脸伪…

线段树详解——影子宽度

OK&#xff0c;今天来讲一讲线段树~~ 线段树是什么线段树的实现线段树的时间复杂度线段树的应用线段树的节点结构其他操作和优化例题——影子宽度输入输出格式输入格式输出格式 输入输出样例输入样例输出样例 例题讲解 线段树是什么 线段树&#xff08; S e g m e n t Segmen…

数字化时代,数据仓库和商业智能BI系统演进的五个阶段

数字化在逐渐成熟的同时&#xff0c;社会上也对数字化的性质有了进一步认识。当下&#xff0c;数字化除了前边提到的将复杂的信息、知识转化为可以度量的数字、数据&#xff0c;在将其转化为二进制代码&#xff0c;引入计算机内部&#xff0c;建立数据模型&#xff0c;统一进行…

什么是CSS中的BFC?

①什么是BFC BFC 全称&#xff1a;Block Formatting Context&#xff0c; 名为 “块级格式化上下文”。 W3C官方解释为&#xff1a;BFC它决定了元素如何对其内容进行定位&#xff0c;以及与其它元素的关系和相互作用&#xff0c;当涉及到可视化布局时&#xff0c;Block Forma…