opencv进阶12-EigenFaces 人脸识别

EigenFaces 通常也被称为 特征脸,它使用主成分分析(Principal Component Analysis,PCA) 方法将高维的人脸数据处理为低维数据后(降维),再进行数据分析和处理,获取识别结果。

基本原理

在现实世界中,很多信息的表示是有冗余的。例如,表 23-2 所列出的一组圆的参数中就存在冗余信息。

在这里插入图片描述
在表 23-2 所示的参数中,各个参数之间存在着非常强的相关性:

  • 直径 = 2*半径
  • 周长 = 2π半径
  • 面积 = π半径半径

可以看到,直径、周长和面积都可以通过半径计算得到。

在进行数据分析时,如果我们希望更直观地看到这些参数的值,就需要获取所有字段的值。

但是,在比较圆的面积大小时,仅使用半径就足够了,此时其他信息对于我们来说就是“冗余”的。

因此,我们可以理解“半径”就是表 23-2 所列数据中的“主成分”,我们将“半径”从上述数据中提取出来供后续分析使用,就实现了“降维”。

当然,上面例子的数据非常简单、易于理解,而在大多数情况下,我们要处理的数据是比较复杂的。很多时候,我们可能无法直接判断哪些数据是关键的“主成分”,所以就要通过 PCA方法将复杂数据内的“主成分”分析出来。

EigenFaces 就是对原始数据使用 PCA 方法进行降维,获取其中的主成分信息,从而实现人脸识别的方法。

函数介绍

OpenCV 通过函数 cv2.face.EigenFaceRecognizer_create()生成特征脸识别器实例模型,然后应用 cv2.face_FaceRecognizer.train()函数完成训练,最后用 cv2.face_FaceRecognizer.predict()函数完成人脸识别。

  1. 函数cv2.face.EigenFaceRecognizer_create()

函数 cv2.face.EigenFaceRecognizer_create()的语法格式为:

retval = cv2.face.EigenFaceRecognizer_create( [, num_components[,
threshold]] )

式中的两个参数都是可选参数,含义如下:

  • num_components:在 PCA 中要保留的分量个数。当然,该参数值通常要根据输入数据
    来具体确定,并没有一定之规。一般来说,80 个分量就足够了。
  • threshold:进行人脸识别时所采用的阈值。
  1. 函数cv2.face_FaceRecognizer.train()
    函数 cv2.face_FaceRecognizer.train()对每个参考图像进行 EigenFaces 计算,得到一个向量。
    每个人脸都是整个向量集中的一个点。该函数的语法格式为:
    None = cv2.face_FaceRecognizer.train( src, labels )
    式中各个参数的含义为:
  • src:训练图像,用来学习的人脸图像。
  • labels:人脸图像所对应的标签。
    该函数没有返回值。
  1. 函数cv2.face_FaceRecognizer.predict()
    函数 cv2.face_FaceRecognizer.predict()在对一个待测人脸图像进行判断时,会寻找与当前图像距离最近的人脸图像。与哪个人脸图像最接近,就将待测图像识别为其对应的标签。该函数的语法格式为:

label, confidence = cv2.face_FaceRecognizer.predict( src )

式中各个参数及返回值的含义为:

  • src:需要识别的人脸图像。
  • label:返回的识别结果标签。
  • confidence:返回的置信度评分。置信度评分用来衡量识别结果与原有模型之间的距离。

0 表示完全匹配。该参数值通常在 0 到 20 000 之间,只要低于 5000,都被认为是相当可靠的识别结果。注意,这个范围与 LBPH 的置信度评分值的范围是不同的。

示例:使用 EigenFaces 模块完成一个简单的人脸识别程序。



import cv2
import numpy as np
images=[]
images.append(cv2.imread("face\\face2.png",cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread("face\\face3.png",cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread("face\\face4.png",cv2.IMREAD_GRAYSCALE))
images.append(cv2.imread("face\\face5.png",cv2.IMREAD_GRAYSCALE))
labels=[0,0,1,1]
#print(labels)
recognizer = cv2.face.EigenFaceRecognizer_create()
recognizer.train(images, np.array(labels))
predict_image=cv2.imread("face\\face5.png",cv2.IMREAD_GRAYSCALE)
label,confidence= recognizer.predict(predict_image)
print("label=",label)
print("confidence=",confidence)

运行结果:

报错了
在这里插入图片描述
说训练必须所有的图片大小要一致。

新代码:


import cv2
import numpy as np
images=[]
img1= cv2.imread("face\\face2.png",cv2.IMREAD_GRAYSCALE);
img1.resize((240,240))
images.append(img1)

img2= cv2.imread("face\\face3.png",cv2.IMREAD_GRAYSCALE);
img2.resize((240,240))
images.append(img2)

img3= cv2.imread("face\\face4.png",cv2.IMREAD_GRAYSCALE);
img3.resize((240,240))
images.append(img3)

img4= cv2.imread("face\\face5.png",cv2.IMREAD_GRAYSCALE);
img4.resize((240,240))
images.append(img4)

labels=[0,0,1,1]
#print(labels)
recognizer = cv2.face.EigenFaceRecognizer_create()
recognizer.train(images, np.array(labels)) # 识别器训练
predict_image=cv2.imread("face\\face6.png",cv2.IMREAD_GRAYSCALE)
predict_image.resize((240,240))
label,confidence= recognizer.predict(predict_image)
print("label=",label)
print("confidence=",confidence)

运行结果:

label= 1
confidence= 11499.110301703204

从结果来看,比 LBPH 人脸识别 对比稍微准点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/84045.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

亿赛通电子文档安全管理系统 RCE漏洞

亿赛通电子文档安全管理系统 RCE漏洞 一、 产品简介二、 漏洞概述三、 复现环境四、 漏洞复现小龙POC检测: 五、 修复建议 免责声明:请勿利用文章内的相关技术从事非法测试,由于传播、利用此文所提供的信息或者工具而造成的任何直接或者间接的后果及损失…

2023年京东儿童智能手表行业数据分析(京东销售数据分析)

儿童消费市场向来火爆,儿童智能手表作为能够实现定位导航,信息通讯,SOS求救,远程监听,智能防丢等多功能的智能可穿戴设备,能够通过较为精准的定位功能和安全防护能力保障儿童的安全,因而广受消费…

Java详解编译型和解释型语言

在计算机的高级编程语言类型分为两种,分别是编译型和解释型,而Java既有编译型又有解释型 什么是编译型?什么是解释型? 字面上来说编译和解释都有‘翻译’的意思,而她们两个的区别是‘翻译’的时机不同,什…

多种编程语言运行速度排名-10亿次除7求余数为0的数量

最佳方式是运行10次,取平均数,用时秒数显示3位小数。 因为第一次打开,可能CPU还没优化好,多次取平均,比较准确 第1次共10次,用时3秒,平均3秒 第2次共10次,用时4秒,平均3.…

LTDC之外部SDRAM

1.配置外部SDRAM(嵌入式基础知识,此处不做分析) 2.编写SDRAM配置代码(copy正点原子例程) sdram.c#include "sdram.h" #include "fmc.h"uint8_t SDRAM_Send_Cmd(uint8_t bankx,uint8_t cmd,uint8_…

十问华为云 Toolkit:开发插件如何提升云上开发效能

众所周知,桌面集成开发环境(IDE)已经融入到开发的各个环节,对开发者的重要性和广泛度是不言而喻的,而开发插件更是建立在IDE基础上的功能Buff。 Huawei Cloud ToolKit作为华为云围绕其产品能力向开发者桌面上的延伸&a…

C#8.0本质论第三章--更多数据类型

C#8.0本质论第三章–更多数据类型 3.1类型的划分 一个类型要么是值类型,要么是引用类型。区别在于拷贝方式:值类型数据总是拷贝值;引用类型的数据总是拷贝引用。 3.1.1值类型 3.1.2引用类型 引用类型的变量存储对数据存储位置的引用。 3.…

HTML a标签

<a>标签定义一个超链接。它有如下主要属性&#xff1a; href&#xff1a;指定链接的地址&#xff0c;可以是一个URL、文件路径或锚点。target&#xff1a;指定链接在何处打开。其值包括&#xff1a; _blank&#xff1a;在新窗口或新标签页打开链接。_self&#xff1a;在…

【从零开始学爬虫】采集中国国际招标网招标数据

l 采集网站 【场景描述】采集中国国际招标网招标数据。 【源网站介绍】中国国际招标网致力于为企业提供招标、采购、拟在建项目信息及网上招标采购等一系列商务服务。 【使用工具】前嗅ForeSpider数据采集系统 http://www.forenose.com/view/forespider/view/download.html 【…

【广州华锐互动】3D空间编辑器:一款简洁易用的VR/3D在线编辑工具

随着虚拟现实技术的不断发展&#xff0c;数字孪生技术的应用已经被广泛应用于产品设计和制作中&#xff0c;能充分发挥企业应用3D建模的优势&#xff0c;凸显了三维设计的价值&#xff0c;在生产阶段也能够充分发挥3D模型的作用。 如今&#xff0c;广州华锐互动开发的3D空间编辑…

高速道路监控:工业路由器助力高速监控远程管理与维护

工业路由器在物联网应用中扮演着重要的角色。物联网的发展使得大量设备和传感器能够互联互通&#xff0c;而工业路由器作为连接这些设备和网络的中间桥梁&#xff0c;承担着数据传输和安全管理的重要责任。 工业路由器能够为高速监控提供网络功能&#xff0c;实现户外无线网络部…

Python自动化测试代理程序可用性

在网络爬虫和数据采集过程中&#xff0c;代理服务器扮演着重要的角色。然而&#xff0c;代理服务器的可用性经常会受到影响&#xff0c;给爬虫工作带来一定的挑战。本文将介绍如何使用Python自动化测试代理程序的可用性&#xff0c;为您提供具备实际操作价值的解决方案。让我们…

SSM框架的学习与应用(Spring + Spring MVC + MyBatis)-Java EE企业级应用开发学习记录(第二天)Mybatis的深入学习

SSM框架的学习与应用(Spring Spring MVC MyBatis)-Java EE企业级应用开发学习记录&#xff08;第二天&#xff09;Mybatis的深入学习&#xff08;增删改查的操作&#xff09; 上一篇我们的项目搭建好了&#xff0c;也写了简答的Junit测试类进行测试&#xff0c;可以正确映射…

【Linux】cpolar+JuiceSSH实现手机端远程连接Linux服务器

文章目录 1. Linux安装cpolar2. 创建公网SSH连接地址3. JuiceSSH公网远程连接4. 固定连接SSH公网地址5. SSH固定地址连接测试 处于内网的虚拟机如何被外网访问呢?如何手机就能访问虚拟机呢? cpolarJuiceSSH 实现手机端远程连接Linux虚拟机(内网穿透,手机端连接Linux虚拟机) …

商业智能BI是什么都不明白,如何实现数字化?

2021年下半年中国商业智能软件市场规模为4.8亿美元&#xff0c;2021年度市场规模达到7.8亿美元&#xff0c;同比增长34.9%&#xff0c;呈现飞速增长的趋势。数字化时代&#xff0c;商业智能BI对于企业的落地应用有着巨大价值&#xff0c;逐渐成为了现代企业信息化、数字化转型中…

贝锐蒲公英助力建设工程咨询企业,高效安全远程访问数据档案库

随着数字信息化进程的加深&#xff0c;数字化转型已成为企业实现业务流程自动化、提高工作效率、降低成本和提高用户满意度的重要手段。其中&#xff0c;档案工作的标准化、规范化是信息化建设的前提和必要条件&#xff0c;对于建设工程咨询企业而言&#xff0c;一个完善的数字…

​8th参考文献:[8]许少辉.乡村振兴战略下传统村落文化旅游设计[M]北京:中国建筑工业出版社,2022.

​&#xff18;th参考文献&#xff1a;&#xff3b;&#xff18;&#xff3d;许少辉&#xff0e;乡村振兴战略下传统村落文化旅游设计&#xff3b;&#xff2d;&#xff3d;北京&#xff1a;中国建筑工业出版社&#xff0c;&#xff12;&#xff10;&#xff12;&#xff12;&a…

Revit 3D高效处理:cad exchanger sdk 3.21 Crack

3D 格式概述&#xff1a;Revit Revit 已成为寻求高效、准确的建筑信息建模的专业人士的首选解决方案。在这篇引人入胜的功能概述中了解 Revit 的特性和影响。 什么是Revit&#xff1f; Autodesk Revit 是一款流行的 CAD 软件&#xff0c;重点关注 BIM&#xff0c;被建筑师、工…

3D角色展示

先看效果&#xff1a; 再看代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>3D卡片悬停</title><style>font-face {font-family: "Exoct";src: url("htt…

机器学习,过拟合与欠拟合,正则化与交叉验证

目录 机器学习 过拟合与欠拟合 正则化与交叉验证 正则化 交叉验证 机器学习 的目的是使学到的模型不仅对已知数据而且对未知数据都能有很好的预测能力。 不同的机器学习方法会给出不同的模型。当损失函数给定时&#xff0c;基于损失函数的模型的训练误差&#xff08;tra…