Stable Diffusion入门修炼手册

简介

作为新入门的新手,通常安装完Stable Diffusion之后,一打开界面,在文生图输入girl或者dog,结果出来的画面比较糟糕,看起来像素很低,画面不清晰,人物也不怎么美,等等其他问题,总之就觉得自己生成的图片怎么跟别人差距那么大?是不是大家也曾经这样过来过?

在这里插入图片描述

今天就来教会大家,如何正确使用Stable Diffusion,掌握基础知识,能正确做出优秀的作品来,首先,先来个基本公式

  1. 一个优秀的作品=CheckPoint大模型+vae+优秀的prompt+embeding+Lora
  2. 一个4k优秀的作品=CheckPoint大模型+vae+优秀的prompt+embeding+Lora+Controlnet(Tile)增加细节+放大算法

在这里插入图片描述
在这里插入图片描述

主要角色

在这里插入图片描述

1、checkpoint(大模型)

这是我们常说的模型,也可以说是底模,必须指定一个才能作画,它是用来控制大整个画面的风格走势的。比如:写实风格,漫画风格等等,文件名后缀一般为.ckpt和.safetensors,模型大小为2G到8G不等。

checkpoint文件放置路径:\models\Stable-diffusion

2、Lora模型

它也是模型之一,它可以使用也可以不使用,它的出现只为了解决大模型能够微调的一种技术,它的作用主要用于雕刻人物、动漫角色、物品的特征、控制画风、固定特征动作等等。文件名后缀一般为.safetensors,大小在20mb到300mb不等,部分Lora会需要触发词来使用,否则效果不明显。

Lora放置路径:\models\lora

3、embedding

这是我们说的prompt集合,它可以用一个特殊表达式词语来代表一连串的关键词,让填写prompt更简单。举个例子,如果我们想要生成一个皮卡丘,通常需要输入很多描述词,如黄毛、老鼠、长耳朵、腮红等等。但是,如果在我们的embedding库中,已经引入皮卡丘的embedding,我们只需要输入皮卡丘。皮卡丘的embedding打包了所有皮卡丘的特征描述,这样我们就不用每次输入很多单词来控制生成的画面了。

embedding文件放置路径:\models\embedding

4、VAE

Vae也是模型之一,但它的作用只是给画面加载一个滤镜的效果,为了就是修正最终输出的图片色彩,如果不加载VAE可能会出现图片特别灰的情况。一般我们直接选用自动模型就可以了,它会自动帮我们解决这类问题。当然也有些特殊情况需要用到VAE来对色彩进行调节。文件后缀一般为.downloading、.safetensors、.ckpt、.pt

VAE文件的放置路径:\models\vae

prompt的使用

prompt的好坏会决定出图的质量,所以为什么有咒语这一说,因为需要很长的prompt来告诉AI具体要的是什么。于是咒语的优化和书写尤为重要,不过不用担心,市场上现在网站上已经出了很多优秀作品,他们的prompt是开源的,可以复制之后来学习,积累自己的prompt词。

  • propmt:正向提示词,表示在画面中需要出现的元素
  • negative propmt:负面提示词,表示在画面中不想要出现的元素

1、增加权重

增加权重会让Stable Diffusion出图的时候,会优先考虑画当前的关键词,当权重超过2.0之后,会让图片重复出现当前关键词,导致Stable Diffusion发挥失常

  • (tag):1.1倍
  • ((tag)):1.1x1.1=1.21倍,每套一层括号,额外x1.1倍
  • {tag}:1.05倍
  • {{tag}}:1.05x1.05=1.1025倍,每套一层大括号,额外x1.05倍

当然权重也不是越高越好的

在这里插入图片描述

2、减少权重

减少权重会让Stable Diffusion出图的时候,只是作为参考使用,当权重低于0.5的时候表示当前的关键词可有可无

  • [tag]:0.9倍
  • [[tag]]:0.9x0.9=0.81倍,每套一层括号,额外x0.9倍

3、精准权重

  • (tag:1.2):1.2倍
  • (tag:0.9):0.9倍

4、使用Lora

lora的使用是一个表达式,如下:

  • lora:bg:1.2:使用bg的Lora模型,权重为1.2
  • lora:bg:1.2,lora:bgV2:1.5:同样的多个Lora的使用也是可以的

在这里插入图片描述

市场上开源的Lora风格还是很多,像图上的盲盒风格(第一个),电影风格(最后一个)

5、使用embedding

embedding的使用非常简单,跟书写prompt一样,直接写到提示词上即可,前提是要下载好当前的embedding模型,不需要任何表达式。embedding最常用的例子就是生成的人物的时候,要求必须是完整的2个眼睛1个鼻子2个耳朵1个嘴巴5个手指,同样的也能在负面提示词中增加embedding,还是同样的人物,不能出现坏手,3个手指,4个手指等

在这里插入图片描述

很明显可以看出,在NP(negative prompt)中使用EasyNegative模型和没有使用NP的区别

  • 没有EasyNegative:手部明显画的很粗糙,不太像是人的手
  • 使用EasyNegative:手部比较正常,细节也是正常可观

prompt的进阶玩法

进阶玩法能更加精准控制prompt生成我们想要的图

1、混合

  • 混合:强制将不同的主体的元素特征进行混合出图,用AND把多种要素强制融合画进去
  • 语法:关键词1 AND 关键词2 AND 关键词3
  • 举例:1cat:2 AND 1dog AND 1tiger,想要生成一个狗、猫和老虎

在这里插入图片描述

2、渐变

  • 渐变:指的是在作画中,将元素进行过渡的过程
  • 语法:[from:to:when]
    • when:表示的迭代步数或比例(数值在0-1范围表示比例,1- 表示步数)
    • From:提示词,表示在 when 前的步数渲染 from 提示词
    • to:提示词,表示在 when 后的步数渲染 to 提示词
  • 举例:(1 girl ,[blue hair:red hair:5]):我们希望画一个女孩,能够有红色和蓝色的头发

在这里插入图片描述

3、交替渲染

  • 交替渲染:交替渲染更像是在作画时每一笔交替使用不同的主体特征进行作画的方式
  • 语法:[关键词1|关键词2]
  • 举例:[1dog|1cat|1tiger],一个狗、猫和老虎进行交替渲染

在这里插入图片描述

界面介绍

1、模型选项

模型选项就是顶部的几个选择栏,用来选择大模型和Vae模型使用,常用的就是换大模型,其他保持默认即可

在这里插入图片描述

2、提示词面板

提示词面板分2块,propmt和negative propmt

  • propmt:正向提示词,表示在画面中需要出现的元素
  • negative propmt:负面提示词,表示在画面中不想要出现的元素

在这里插入图片描述

3、功能按钮

功能按钮指的是右边这几个功能按钮

在这里插入图片描述

第一按钮他有两个功能

  1. 当你关掉软件后,点击这个按钮,就会读取你上一次做图的所有参数信息复制进来。
  2. 当你在其他模型网站中Copy Generation Data复制别人案例图片的所有配置信息,粘贴到提示词中,再点击这个按钮,就会自动读取配置信息的所有配置,并应用到自己的作画参数中

在这里插入图片描述

第二个按钮就是删除了,清空关键词

在这里插入图片描述

第三个按钮就是模型选择管理,可以选择现有的CheckPoint、Lora、embedding等模型仓库,点击模型即可应用

在这里插入图片描述

在这里插入图片描述

第四个按钮和第五个按钮是提示词模板功能

  1. 第四个是读取当前选定的模板风格所有提示词写入到提示词中
  2. 第五个是将当前的提示词,保存到新的模板中,方便下次使用

在这里插入图片描述

4、绘图参数面板

绘图参数面板的功能是比较多的,他可以通过拓展安装各种插件,来控制绘图的过程

在这里插入图片描述

1.采样步数

一般来说大部分时候采样部署只需要保持在20~30之间即可,更低的采样部署可能会导致图片没有计算完全,更高的采样步数的细节收益也并不高,只有非常微弱的证据表明高步数可以小概率修复肢体错误,所以只有想要出一张穷尽细节可能的图的时候才会使用更高的步数。(加大这个会导致出图变慢)

在这里插入图片描述

2.采样方法

采样方法即是Stable Diffusion中的去噪音过程,你可以理解为不同的算法,目前的采样方法较多,但是我们常用的就那几个,经过各方面的实验来说,带有++符号的采样方法是经过改进后的算法,建议找带有++符号的使用。

在这里插入图片描述

3.其他选项

在这里插入图片描述

  • 面部修复:在做一些人物图片的时候,防止人脸出现崩坏的情况,可以勾选,但如果你的提示词足够强大,就可以不开启
  • 高清修复:把基础生成的图片,按照你选择放大的倍率放大到指定分辨率之后再重新绘制图片
  • 宽度、高度:图片的长和宽
  • 生成批次和数量:生成几批图,一批几张图
  • 提示词相关性:图像与你的提示的匹配程度。增加这个值将导致图像更接近你的提示词,如果提示词比较烂,那么图像质量会有降低
  • 种子:生成图片的唯一标识,输入不同的种子,生成的图片不一样,seed值一样,那生成的图片也是一样

实操演示

这里实操一张4k的赛博朋克风格的手机壁纸,作为演示例子。手机屏幕4K分辨率=2160×3840 (9:16)

第一步:文生图

先通过简单的咒语,用写实风格的模型,固定的种子,生成1张540x960的图,作为现在的手机像素540勉强有点说不过去,所以增加高清修复功能,放大到2倍,也就是生成的图是1080x1920
在这里插入图片描述
在这里插入图片描述

第二步:增加Lora模型

在咒语中增加赛博朋克的Lora模型,让当前风格增加些赛博朋克元素,当前用的是超写实赛博朋克美女的Lora,记得提前下载
在这里插入图片描述
在这里插入图片描述

很明显图片更加的靠近游戏的赛博朋克风格

第三步:发送到图生图,启用Controlnet的Tile模型

将当前的图片发送到图生图
在这里插入图片描述

在图生图的Controlnet插件中,选择启用,选用tile模型,tile模型可以极大限度提升当前图片的细节,将重绘幅度调为0.9,点击生成

在这里插入图片描述
在这里插入图片描述

很明显图片的细节和色彩更加丰富

第四步:将图片发送到后期处理,进行放大算法处理

由于我们现在生成的是高清修复后的1080,距离4k像素还有2倍的距离,所以我们将当前图片放大2倍,选择R-ESRGAN 4x+放大算法

在这里插入图片描述
在这里插入图片描述

图片超过5m上传不了,这里只能截图展示啦

到这里我们就生成出一张像素为2160×3840赛博朋克风格的手机壁纸,到这里就掌握了Stable diffusion的入门操作啦

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/83997.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【100天精通python】Day38:GUI界面编程_PyQt 从入门到实战(中)_数据库操作与多线程编程

目录 专栏导读 4 数据库操作 4.1 连接数据库 4.2 执行 SQL 查询和更新: 4.3 使用模型和视图显示数据 5 多线程编程 5.1 多线程编程的概念和优势 5.2 在 PyQt 中使用多线程 5.3 处理多线程间的同步和通信问题 5.3.1 信号槽机制 5.3.2 线程安全的数据访问 Q…

二、10.文件系统

硬盘是低速设备,其读写单位是扇区,为了避免频繁访问硬盘,操作系统不会有了一扇区数据就去读写一次磁盘,往往等数据积攒到“足够大小”时才一次性访问硬盘,这足够大小的数据就是块,硬盘读写单位是扇区&#…

二、9.硬盘驱动程序

文件系统是运行在操作系统中的软件模块,是操作系统提供的一套管理磁盘文件读写的方法和数据组织、存储形式,因此,文件系统=数据结构+算法,哈哈,所以它是程序。它的管理对象是文件,管…

C语言小白急救 指针初级讲解(四千字教程)

系列文章目录 C语言小白急救 表达式求值(两千字教程) C语言小白急救 操作符详解(8千字保姆级教程) C语言小白急救 扫雷游戏(万字保姆级教程) C语言小白急救 使用C语言编写‘三子棋‘ 文章目录 系列文章目录[C语言小白急救 表达式…

Docker的基本使用

Docker 概念 Docker架构 docker分为客户端,Docker服务端,仓库 客户端 Docker 是一个客户端-服务器(C/S)架构程序。Docker 客户端只需要向 Docker 服务端发起请求,服务端将完成所有的工作并返回相应结果。 Docker …

设计模式之创建者模式

文章目录 一、介绍二、应用三、案例1. 麦当劳11随心配2. 代码演示3. 演示结果 四、优缺点五、送给读者 一、介绍 建造者模式(Builder Pattern)属于创建型设计模式,很多博客文章的对它的作用解释为用于将复杂对象的创建过程与其细节表示分离。但对于初学者来说&…

机器学习深度学习——NLP实战(情感分析模型——textCNN实现)

👨‍🎓作者简介:一位即将上大四,正专攻机器学习的保研er 🌌上期文章:机器学习&&深度学习——NLP实战(情感分析模型——RNN实现) 📚订阅专栏:机器学习…

Lnton羚通算法算力云平台【PyTorch】教程:torch.nn.Softsign

torch.nn.Softsign 原型 CLASS torch.nn.Softsign() 图 代码 import torch import torch.nn as nnm nn.Softsign() input torch.randn(4) output m(input)print("input: ", input) print("output: ", output)# input: tensor([ 0.0046, -0.4135, -2…

003-Nacos 2.1.x 注册实例源码分析

目录 Nacos 2.1.X注册实例入口接口流程Client 注册 事件处理 服务订阅入口 Nacos 2.1.X 注册实例 入口 com.alibaba.nacos.naming.remote.rpc.handler.InstanceRequestHandler#handleService service Service.newService(request.getNamespace(), request.getGroupName(), r…

7-10 查验身份证

分数 15 全屏浏览题目 切换布局 作者 陈越 单位 浙江大学 一个合法的身份证号码由17位地区、日期编号和顺序编号加1位校验码组成。校验码的计算规则如下: 首先对前17位数字加权求和,权重分配为:{7,9,10&#xff0c…

dockerfile编写LNMP

目录 1. 项目环境 2. 服务器环境 二、部署nginx(容器IP为192.168.158.26) 1、整个Dockerfile文件内容 ​编辑 2、配置nginx.conf文件 3、构建镜像 三、部署mysql 1、整个Docker文件内容 3、生成镜像 4、启动镜像容器 5、验证mysql 四、PHP部署 1…

深入理解Semaphore

Semaphore(信号量)是操作系统中PV操作的原语在java中的实现,它也是基于AQS实现的。其中PV操作是操作系统中一种实现进程互斥与同步的有效方法。PV操作与信号量(S)的处理有关,P表示通过,V表示释放…

SpringCloud Gateway服务网关的介绍与使用

目录 1、网关介绍2、SpringCloudGateway工作原理3、三大组件3.1 、Route(路由)3.2、断言 Predicate3.3、过滤器 filter 4、Gateway整合nacos的使用4.1 、引入依赖4.2、 编写基础类和启动类4.3、 编写基础配置和路由规则4.4 、测试结果 1、网关介绍 客户…

面试之HTTP

1.HTTP与HTTPS的区别 HTTP运行在TCP之上;HTTPS是运行在SSL之上,SSL运行在TCP之上两者使用的端口不同:HTTP使用的是80端口,HTTPS使用的是443端口安全性不同:HTTP没有加密,安全性较差;HTTPS有加密…

为什么选择elasticsearch分布式搜索引擎

文章目录 🔭什么是elasticsearch🌠ELK技术栈🌠elasticsearch和lucene🌠为什么不是其他搜索技术? 🔭总结 🔭什么是elasticsearch elasticsearch是一款非常强大的开源搜索引擎,具备非常…

让智慧城市更进一步,无人机解决方案全面应用

在城市规划中,无人机正在颠覆传统的操作和思维方式。这种技术不仅改变了城市管理获取和分析信息的方式,还提供了前所未有的视角,使城市管理能够更加明智地制定策略。 1. 数据采集的新纪元: 城市规划的核心在于数据的收集和分析。…

Mysql5.7.36主从同步实操

主库创建同步账户 #创建备份的账户 CREATE USER backup192.168.32.1 IDENTIFIED BY backup123; #给账户授予备份的权限 GRANT REPLICATION SLAVE ON *.* TO backup192.168.32.1; #刷新权限 FLUSH PRIVILEGES;停止主库 配置主库需要的备份参数 打开my.ini文件,配置…

Hive(一)

一、DDL 1、数据库操作 1)、创建数据库 语法: CREATE DATABASE [IF NOT EXISTS] database_name [COMMENT database_comment] [LOCATION hdfs_path] [WITH DBPROPERTIES (property_nameproperty_value, ...)]; 案例: (1&…

卷积神经网络——下篇【深度学习】【PyTorch】

文章目录 5、卷积神经网络5.10、⭐批量归一化5.10.1、理论部分5.10.2、代码部分 5.11、⭐残差网络(ResNet)5.11.1、理论部分5.11.2、代码部分 话题闲谈 5、卷积神经网络 5.10、⭐批量归一化 5.10.1、理论部分 批量归一化可以解决深层网络中梯度消失和…

Anaconda, Python, Jupyter和PyCharm介绍

目录 1 Anaconda, Python, Jupyter和PyCharm介绍 2 macOS通过Anaconda安装Python, Jupyter和PyCharm 3 使用终端创建虚拟环境并安装PyTorch 4 安装PyCharm并导入Anaconda虚拟环境 5 Windows操作系统下Anaconda与PyCharm安装 6 通过 Anaconda Navigator 创建 TensorFlow 虚…