R语言实现非等比例风险生存资料分析(1)

#非等比例风险的生存资料分析
###1 生成模拟数据###
library(flexsurv)
set.seed(123)
# 生成样本数量
n <- 100
# 生成时间数据
time <- sample(1:1000,n,replace=F)  # 调整shape和scale参数以控制生存曲线形状
# 生成事件数据(假设按比例风险模型)
status <- rbinom(n, size = 1, prob = plogis(-0.5 + 0.01 * time))
# 生成一些协变量数据
covariate1 <- sample(c(0,1,100),n,replace=T)
covariate2 <- rbinom(n, size = 3, prob = 0.5)
group<-sample(c(0,1),n,replace=T)
# 创建生存数据框
survival_data <-data.frame(time,status,covariate1,covariate2,group)

###2 绘制KM曲线###
library(survminer)
library(survival)
library(ggplot2)
fit<-survfit(Surv(time,status) ~group,data=survival_data)
ggsurvplot(fit,title="图1")

###3 检验等比例风险###
#观察图片
plot(fit,fun='cloglog',col=c("red","green"),xlab="生存时间对数",ylab="二次对数生存率")
#残差法
coxfit<-coxph(Surv(time,status) ~group,data=survival_data)
zph<-cox.zph(coxfit,transform = "km")
ggcoxzph(zph,title="图2")#不满足等比例风险
cox.zph(coxfit,transform = "rank")
cox.zph(coxfit,transform = "identity")

###4 two-stage 组间差异比较###
library(TSHRC)
twostage(time,
         status,group,
         nboot=1000)#仅可以说明组间存在差异
#LRPV:log-rank检验;MTPV第二阶段检验;TSPV:两阶段检验结果
#install.packages("ComparisonSurv")
library(ComparisonSurv)
help(package="ComparisonSurv")
Overall.test(time,status,group)#包含two-stage在内的9种方法

###5 比较大小###
# 找出交叉点对应的时间
crosspoint(time,status,group)#768/774/775/999
#使用ComparisonSurv中的长期和短期比较
Long.test(time,status,group,t0=775)
Short.test(time,status,group,t0=775)
#RMST法:限制平均生存时间
#使用surv2sampleComp
library(surv2sampleComp)
help(package="surv2sampleComp")
sur1<-surv2sample(time,status,group,tau_start=0,tau=775,procedure="KM")
max(time);min(time)
sur2<-surv2sample(time,status,group,tau_start=775,tau=938,procedure="KM")#tau为两组中最长观测值的最小值
#使用survRM2
library(survRM2)
help(package="survRM2")
sur3<-rmst2(survival_data$time, 
      survival_data$status, arm=survival_data$group, 
      tau = 755, alpha = 0.05)
plot(sur3)
#landmark方法
dat1<-survival_data[survival_data$time<775,]
pzg<-coxph(Surv(time,status) ~group,data=dat1) %>% summary
pz<-pzg[["coefficients"]][1,5]
hr<-pzg[["coefficients"]][1,1]
dat2<-survival_data[survival_data$time>=775,]
pzg2<-coxph(Surv(time,status) ~group,data=dat2) %>% summary
pz2<-pzg2[["coefficients"]][1,5]
hr2<-pzg2[["coefficients"]][1,1]
duan_1<-survfit(Surv(time,status)~group,dat1) 
duan_2<-survfit(Surv(time,status)~group,dat2)
#绘图
plot(duan_1, lty = c('solid', 'dashed'), col = c('red', 'blue'), xlim = c(0, 1000), xlab = "生存时间(天)", ylab = '累计生存率', axes = FALSE, lwd = 2)
text(695, 1.0, paste('P=',round(pz,3)))
text(695, 0.8, paste('HR=',round(hr,3)))
axis(1)
axis(2)
axis(4)
duan2a <- survfit(Surv(dat2$time, dat2$status == "1") ~ dat2$group, subset = (dat2$group == 1))
duan2b <- survfit(Surv(dat2$time, dat2$status == "1") ~ dat2$group, subset = (dat2$group == 0))
lines(c(775, duan2b$time), c(1, duan2b$surv), type = "s", lty = 'solid', lwd = 2, col = 'red')
lines(c(775, duan2a$time), c(1, duan2a$surv), type = "s", lty = 'dashed', lwd = 2, col = 'blue')
text(940, 1.0, paste('P<0.01'))
text(940, 0.8, paste('HR=',round(hr2,3)))
abline(v =775, lty = 2, col = "darkgreen", lwd = 3)

 

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/82004.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

透视俄乌网络战之一:数据擦除软件

数据擦除破坏 1. WhisperGate2. HermeticWiper3. IsaacWiper4. WhisperKill5. CaddyWiper6. DoubleZero7. AcidRain8. RURansom 数据是政府、社会和企业组织运行的关键要素。数据擦除软件可以在不留任何痕迹的情况下擦除数据并阻止操作系统恢复摧&#xff0c;达到摧毁或目标系统…

C++------利用C++实现二叉搜索树【数据结构】

文章目录 二叉搜索树概念二叉搜索树的操作查找插入删除 二叉搜索树的应用 二叉搜索树 概念 什么是二叉搜索树&#xff0c;二叉搜索树就是指左孩子永远比根小右孩子永远比根大。这个规则适用于所有的子树。 上面的就是一棵二叉搜索树&#xff0c;我们还可以发现这棵树走一个中…

stm32开关控制led灯泡(附Proteus电路图)

说明&#xff1a;我的灯泡工作电压2V&#xff0c;电流设置为10um,注意了不是10毫安时微安啊&#xff0c;要不然电流太小亮不起来的。 2&#xff1a;我用的开关不是按钮button而是switch, 3&#xff1a;PB0,PB1默认都是低电平&#xff0c;采用了PULLDOWN模式&#xff0c;如果设…

【排序】插入排序 希尔排序(改进)

文章目录 插入排序时间复杂度空间复杂度 代码希尔排序时间复杂度空间复杂度 代码 以从小到大排序为例进行说明。 插入排序 插入排序就是从前向后&#xff08;i1开始&#xff09;进行选择&#xff0c;如果找到在i之前&#xff08;分配一个j下标进行寻找&#xff09;有比array[i…

uniapp选择只选择月份demo效果(整理)

<template><view style"margin-top: 200rpx;"><!-- mode"multiSelector" 多列选择器 --><view><picker :range"years" :value"echoVal" change"yearChange" mode"multiSelector">{…

Android Studio 新建module报错:No signature of method

android平台uni原生插件开发过程中&#xff0c;使用Android Studio 新增 module 报错 选择app --> create new module &#xff0c;填写相关信息 Android Studio 新建module报错&#xff1a; 原因&#xff1a;Android Studio 版本过高&#xff0c;新增了namespace&#x…

Elasticsearch复合查询之Boosting Query

前言 ES 里面有 5 种复合查询&#xff0c;分别是&#xff1a; Boolean QueryBoosting QueryConstant Score QueryDisjunction Max QueryFunction Score Query Boolean Query在之前已经介绍过了&#xff0c;今天来看一下 Boosting Query 用法&#xff0c;其实也非常简单&…

轻松搭建书店小程序

在现今数字化时代&#xff0c;拥有一个自己的小程序成为了许多企业和个人的追求。而对于书店经营者来说&#xff0c;拥有一个能够提供在线购书服务的小程序将有助于吸引更多的读者&#xff0c;并提升销售额。本文将为您介绍如何轻松搭建书店小程序&#xff0c;并将其成功上线。…

B树和B+树MySQL为什么用B+树?

文章目录 B树和B树B树B树的定义B树的插入操作删除操作 B树B树的定义B树的插入操作删除操作 B树和B树的区别?MySQL数据库为啥用B树作为索引&#xff0c;而不用B树? B树和B树 原文链接&#xff1a;https://blog.csdn.net/jinking01/article/details/115130286 B树 B树的定义…

NLP序列标注问题,样本不均衡怎么解决?

【学而不思则罔&#xff0c;思而不学则殆】 1.问题 NLP序列标注问题&#xff0c;样本不均衡怎么解决&#xff1f; 2.解释 以命名实体识别&#xff08;NER&#xff09;为例&#xff0c;这个样本不均衡有两种解释&#xff1a; &#xff08;1&#xff09;实体间类别数量不均衡…

关于vant2 组件van-dropdown-item,在IOS手机上,特定条件下无法点击问题的探讨

情景重现 先贴有问题的代码 <template><div :class"showBar ? homeContain : homeContain-nobar"><div class"contant" id"content"><van-dialog v-model"loading" :before-close"onBeforeClose" :…

【Python从入门到进阶】32、bs4的基本使用

接上篇《31、使用JsonPath解析淘票票网站地区接口数据》 上一篇我们介绍了如何使用JSONPath来解析淘票票网站的地区接口数据&#xff0c;本篇我们来学习BeautifulSoup的基本概念&#xff0c;以及bs4的基本使用。 一、BeautifulSoup简介 1、bs4基本概念 BeautifulSoup是一个P…

.Net Core 动态加载和卸载程序集

从 .Net Core 3.0开始支持程序集的加载和卸载&#xff0c;在 .Net FrameWork中使用独立的应用程序域来实现同样的功能&#xff0c;.Net Core 不支持创建多个应用程序域&#xff0c;所以无法使用多个应用程序域来实现程序集动态加载和卸载。 AssemblyLoadContext 程序集加载上下…

使用pnpm workspace管理Monorepo架构

在开发项目的过程中&#xff0c;我们需要在一个仓库中管理多个项目&#xff0c;每个项目有独立的依赖、脚手架&#xff0c;这种形式的项目结构我们称之为Monorepo&#xff0c;pnpm workspace就是管理这类项目的方案之一。 一、pnpm简介 1、pnpm概述 pnpm代表performance npm…

Docker容器:docker基础概述、安装、网络及资源控制

文章目录 一.docker容器概述1.什么是容器2. docker与虚拟机的区别2.1 docker虚拟化产品有哪些及其对比2.2 Docker与虚拟机的区别 3.Docker容器的使用场景4.Docker容器的优点5.Docker 的底层运行原理6.namespace的六项隔离7.Docker核心概念 二.Docker安装 及管理1.安装 Docker1.…

525. 连续数组

525. 连续数组 原题链接&#xff1a;完成情况&#xff1a;解题思路&#xff1a;参考代码&#xff1a; 原题链接&#xff1a; 525. 连续数组 https://leetcode.cn/problems/contiguous-array/description/ 完成情况&#xff1a; 解题思路&#xff1a; 参考代码&#xff1a; …

初出茅庐的小李博客之STM32CubeMx配置定时器的编码器模式

STM32CubeMx配置定时器的编码器模式 上次文章写了编码器是如何工作的&#xff0c;今天就来用STM32F103C8T6的TIM3的通道1跟通道2编写一个编码器识别程序。 编程思路&#xff1a; A相:TIM3_CH1 B相:TIM3_CH2 SWITCH:PB5&#xff08;外部中断的方式&#xff09; 实现效果&a…

基于Java/springboot铁路物流数据平台的设计与实现

摘要 随着科学技术的飞速发展&#xff0c;社会的方方面面、各行各业都在努力与现代的先进技术接轨&#xff0c;通过科技手段来提高自身的优势&#xff0c;铁路物流数据平台当然也不能排除在外&#xff0c;从文档信息、铁路设计的统计和分析&#xff0c;在过程中会产生大量的、各…

基于SpringCloud的会议室预约系统Java基于微服务的会议室报修系统【源码+lw】

&#x1f495;&#x1f495;作者&#xff1a;计算机源码社 &#x1f495;&#x1f495;个人简介&#xff1a;本人七年开发经验&#xff0c;擅长Java、微信小程序、Python、Android、大数据等&#xff0c;大家有这一块的问题可以一起交流&#xff01; &#x1f495;&#x1f495…

Docker入门——实战图像分类

一、背景 思考&#xff1a; 在一个项目的部署阶段&#xff0c;往往需要部署到云服务器或者是终端设备上&#xff0c;而环境的搭建往往是最费时间和精力的&#xff0c;特别是需要保证运行环境一致性&#xff0c;有什么办法可以批量部署相同环境呢&#xff1f; Docker本质——…