嵌入式设计中对于只有两种状态的变量存储设计,如何高效的对循迹小车进行偏差量化

前言

(1)在嵌入式程序设计中,我们常常会要对各类传感器进行数据存储。大多时候的传感器,例如红外光传感器,返回的数据要么是0,要么是1。因此,只需要一bit就能够存储。而很多人却常常使用char型数组存储,这样真正申请到的内存只使用了八分之一。对于MCU这种空间宝贵的微型控制器而言,这是对内存的极大浪费。
(2)因此,我在此介绍一个初学C语言时候讲解的技术——位域,提高空间的利用率。
(3)在入门嵌入式开发的时候,大多数人都是做一个循迹小车,而进行循迹,就需要对光电传感器进行偏差量化。根据偏差量化的值进行输出相应的PWM。(如果是开环控制)进行偏差量化,使用联合体,无疑是最高效的方式。

优化两种状态变量存储

存储

(1)例如,我这个小项目,需要使用上一个12路循迹模块,一个红外遥控器,一个触摸模块(有一种触摸模块你手摸上去,就会返回指定电平)。
(2)为了高效存储这些只有两个状态的变量。我们可以按照下面方式进行存储。

/*--- 存储结构设计 ---*/
typedef struct
{
	uint8_t track_bit1	:1;
	uint8_t track_bit2	:1;
	uint8_t track_bit3	:1;
	uint8_t track_bit4	:1;
	uint8_t track_bit5	:1;
	uint8_t track_bit6	:1;
	uint8_t track_bit7	:1;
	uint8_t track_bit8	:1;
	uint8_t track_bit9	:1;
	uint8_t track_bit10	:1;
	uint8_t track_bit11	:1;
	uint8_t track_bit12	:1; //上面都是灰度传感器控制位
	uint8_t IRDS_bit13	:1; //红外遥控器控制位
	uint8_t Touch_bit14	:1; //触摸模块
	uint8_t bit15	:1;     //下面2bit保留
	uint8_t bit16	:1;
}Bit_field;  

访问

(1)现在我们知道如何存储这个如何访问呢?这个其实是C语言位域基础知识,但是为了防止有一些大学这部分不教,所以我还是讲一下。

Bit_field two_status_sensor;
two_status_sensor.track_bit1 = readpin(1); //使用你当前的MCU读取引脚电平函数
two_status_sensor.track_bit2 = readpin(2); //使用你当前的MCU读取引脚电平函数
two_status_sensor.IRDS_bit13 = readpin(13); //使用你当前的MCU读取引脚电平函数
if(two_status_sensor.IRDS_bit13 == 1) //假设遥控器被按下,引脚为高电平
{
	//...
}

利用共用体进行偏差量化

利用Excel可视化偏差量化

(1)现在我们使用位域对这种2值变量有了一个很好的存储了。但是我们都知道,想循迹模块需要对数据进行处理。而如何进行偏差量化又是一个问题。在此,我推荐使用excl表格,这样能够非常直观的对数据处理。
(2)我们有几路循迹,就需要写几格,一个16进制数据之后方便编程,最后是我们偏差量化值,2进制那一格是为了方便转换成16进制而写。
(3)美化表格

>

(4)将表格填充

在这里插入图片描述

(5)然后自己填写自己设定的偏差量化值,并且将传感器有反应的地方用蓝色填充,这样有利于阅读。

在这里插入图片描述

将偏差量化编程出来

大部分人写的垃圾代码

(1)用Excel将传感器的数值偏差量化出来了,但是如何编程了?想必很多同学使用下面这种非常低效方法进行偏差量化。

char deviation;  //存储偏差量化值
if(two_status_sensor.track_bit1 == 1) deviation = -11;
if(two_status_sensor.track_bit1 == 1 && two_status_sensor.track_bit2) deviation = -10;
if(two_status_sensor.track_bit1 == 1) deviation = -9;
//...

(2)这种方法,编写起来非常麻烦,而且不方便阅读,可以说,写的相当的垃圾!

利用联合体管控标志位

(1)为了提高代码的观赏性,同时方便我们进行调试。我认为我们可以使用联合体的方法优化代码。这样之后,我们能够发现,对于偏差量化的值就能够进行非常好的管控。

/*--- 利用共用体优化偏差量化 ---*/
typedef union    //利用共用体优化偏差量化
{
	Bit_field sensor_value;
	uint16_t state;
}_two_status_sensor; 

/*--- 访问变量 ---*/
char deviation;  //存储偏差量化值的当前值
_two_status_sensor two_status_sensor;   //定义用于记录传感器的值
two_status_sensor.sensor_value.track_bit1 = readpin(1); //使用你当前的MCU读取引脚电平函数
//...  省略读取传感器的值过程

switch(two_status_sensor.state & 0x0FFF)//偏差量化,因为是12路循迹,所以只要低12位
{
	case 0x0001:deviation=-11;break; //000000000001b
	case 0x0003:deviation=-10;break; //000000000011b
	//... 省略其他偏差量化过程
	default://其它特殊情况单独判断
	{
		//...
	}
}

利用带参宏进行标志位判断

(1)但是这个还能不能再次进行优化呢?肯定可以,我们知道,这个2值联合体中,有一些是用于循迹,有些是用于遥控器,有些是用于触摸芯片的。为了提高代码的可阅读性。我们是不是可以用几个带参宏来进行定义呢?

/*--- 利用带参宏进行标志位判断 ---*/
#define track_state(x)  x & 0x0FFF
#define IRDS_state(x)   x & 0x1000
#define Touch_state(x)  x & 0x2000

利用?:和条件编译对提高代码对硬件的适配程度

(1)我们有没有发现一个问题,上面循迹代码,检测到黑线是1。那么肯定有人会说了,假如我硬件上检测到黑线是低电平怎么办呢?
(2)为了提高代码对硬件的适配能力,于是我认为可以使用条件编译。
(3)因为,不同的MCU读取电平返回的不一定是0和1,有可能读取到低电平是0,读取到高电平是一个其他的非0值,例如5。所以为了防止1bit存储不下导致溢出问题。我们可以使用?:来处理。

/*--- 提高代码对硬件的适配能力 ---*/
#define track_active_level  1 //高电平有效写1,低电平有效写0
#if     track_active_level
two_status_sensor.sensor_value.track_bit1 = readpin(1)!=0?0x01:0x00;
//... 其他11个同理
#else 
two_status_sensor.sensor_value.track_bit1 = readpin(1)==0?0x01:0x00;
//... 其他11个同理
#endif

进行错误判断,保护硬件,提高硬件的容错率

(1)看到上面的代码,肯定有骚年觉得已经很好了。但是,我们想想,如果循迹最终的结果返回的数据不是预期数据怎么办?例如小车跑出去了。
(2)为了防止这种异常情况,保护硬件,我们可以加一个标志位worse存储错误次数。如果次数超标就强制停车。
(3)因为小车循迹可能只是刚好偏离路线一点点,或者是硬件突然有点小问题,所以我们还可以建立一个标志位deviation_backup存储偏差量化值的以往值。让小车保持上一次的状态运行提高硬件容错率。

/*--- 提高代码对硬件的适配能力 ---*/
#define track_active_level  1 //高电平有效写1,低电平有效写0
#if     track_active_level
two_status_sensor.sensor_value.track_bit1 = readpin(1)!=0?0x01:0x00;
//... 其他11个同理
#else 
two_status_sensor.sensor_value.track_bit1 = readpin(1)==0?0x01:0x00;
//... 其他11个同理
#endif
/*--- 利用带参宏进行标志位判断 ---*/
#define track_state(x)  x & 0x0FFF
#define IRDS_state(x)   x & 0x1000
#define Touch_state(x)  x & 0x2000
/*--- 利用共用体优化偏差量化 ---*/
typedef union    //利用共用体优化偏差量化
{
	Bit_field sensor_value;
	uint16_t state;
}_two_status_sensor; 

/*--- 访问变量 ---*/
char deviation;  //存储偏差量化值的当前值
char deviation_backup,worse;//存储偏差量化值的以往值,循迹错误次数
_two_status_sensor two_status_sensor;   //定义用于记录传感器的值
two_status_sensor.sensor_value.track_bit1 = readpin(1); //使用你当前的MCU读取引脚电平函数
//...  省略读取传感器的值过程

switch(track_state(two_status_sensor.state))//偏差量化,因为是12路循迹,所以只要低12位
{
	case 0x0001:deviation=-11;worse/2;break; //000000000001b
	case 0x0003:deviation=-10;worse/=2;break; //000000000011b
	//... 省略其他偏差量化过程
	default://其它特殊情况单独判断
	{
		deviation=deviation_backup;//如果是异常情况,就保持上一个状态
		worse++;
	}
}
if(worse == 10) //如果多次循迹错误,说明出现问题了,为了保护硬件,强制停车
{
	//停车
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/81636.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SkyEye操作指南:连接TI CCS的IDE调试

现代电力电子控制系统的开发中,DSP芯片以其优越的运算性能在控制算法领域得到越来越广泛的应用。传统的DSP开发过程往往需要在完成控制系统仿真与程序设计后,才能根据比对结果进行程序修改,全过程还需要硬件电路工程师的配合,开发…

ES的索引结构与算法解析

提到ES,大多数爱好者想到的都是搜索引擎,但是明确一点,ES不等同于搜索引擎。不管是谷歌、百度、必应、搜狗为代表的自然语言处理(NLP)、爬虫、网页处理、大数据处理的全文搜索引擎,还是有明确搜索目的的搜索行为,如各大…

Git判断本地是否最新

场景需求 需要判断是否有新内容更新,确定有更新之后执行pull操作,然后pull成功之后再将新内容进行复制到其他地方 pgit log -1 --prettyformat:"%H" HEAD -- . "origin/HEAD" rgit rev-parse origin/HEAD if [[ $p $r ]];thenecho "Is La…

【Android】设置-显示-屏保-启用时机-默认选中“一律不“

设置-屏保-启用时机-默认选中"一律不" 解决步骤(1)理清思路(2)过程(3)效果图 解决步骤 (1)理清思路 操作步骤: 首先手机进入设置—》点进显示选项—》进入后…

D. Anton and School - 2

范德蒙德恒等式 考虑统计每一个右括号位置的贡献&#xff0c;也就是每个右括号作为右边起点的贡献 其中i0的时候&#xff0c;r-1<r-0,故i0时贡献为0&#xff0c;直接套用恒等式不会有影响 #include <bits/stdc.h> using namespace std; typedef long long int ll; # d…

分布式锁实现方式

分布式锁 1 分布式锁介绍 1.1 什么是分布式 一个大型的系统往往被分为几个子系统来做&#xff0c;一个子系统可以部署在一台机器的多个 JVM(java虚拟机) 上&#xff0c;也可以部署在多台机器上。但是每一个系统不是独立的&#xff0c;不是完全独立的。需要相互通信&#xff…

【数据结构OJ题】有效的括号

原题链接&#xff1a;https://leetcode.cn/problems/valid-parentheses/ 目录 1. 题目描述 2. 思路分析 3. 代码实现 1. 题目描述 2. 思路分析 这道题目主要考查了栈的特性&#xff1a; 题目的意思主要是要做到3点匹配&#xff1a;类型、顺序、数量。 题目给的例子是比较…

神经网络基础-神经网络补充概念-02-逻辑回归

概念 逻辑回归是一种用于二分分类问题的统计学习方法&#xff0c;尽管名字中带有"回归"一词&#xff0c;但实际上它用于分类任务。逻辑回归的目标是根据输入特征来预测数据点属于某个类别的概率&#xff0c;然后将概率映射到一个离散的类别标签。 逻辑回归模型的核…

Django实现音乐网站 ⑾

使用Python Django框架制作一个音乐网站&#xff0c; 本篇主要是前端开发前的一些必要配置和首页展示开发。 目录 配置应用路由 创建应用路由文件 应用路径加入项目路径 创建项目模板 创建项目及应用模板路径 设置模板路径 设置静态资源路径 创建静态资源路径 配置静态…

Qt安卓开发经验技巧总结V202308

01&#xff1a;01-05 pro中引入安卓拓展模块 QT androidextras 。pro中指定安卓打包目录 ANDROID_PACKAGE_SOURCE_DIR $$PWD/android 指定引入安卓特定目录比如程序图标、变量、颜色、java代码文件、jar库文件等。 AndroidManifest.xml 每个程序唯一的一个全局配置文件&…

webshell实践,在nginx上实现负载均衡

1、配置多台虚拟机&#xff0c;用作服务器 在不同的虚拟机上安装httpd服务 我采用了三台虚拟机进行服务器设置&#xff1a;192.168.240.11、192.168.240.12、192.168.240.13 [rootnode0-8 /]# yum install httpd -y #使用yum安装httpd服务#开启httpd服务 [rootnode0-8 /]# …

【C#学习笔记】C#特性的继承,封装,多态

文章目录 封装访问修饰符静态类和静态方法静态构造函数 继承继承原则sealed修饰符里氏替换原则继承中的构造函数 多态接口接口的实例化 抽象类和抽象方法抽象类和接口的异同 虚方法同名方法new覆盖的父类方法继承的同名方法 运行时的多态性编译时的多态性 照理继承封装多态应该…

CSS 字体修饰属性

前言 字体修饰属性 属性说明font-family指定文本显示字体font-size设置字体的大小font-weight设置字体的粗细程度font-style设置字体的倾斜样式text-decoration给文本添加装饰线text-indent设置文本的缩进text-align设置文本的对齐方式line-height设置行高color设置文本的颜色…

Shell脚本基础教程

Shell脚本基础教程 Shell参数定义 定义变量 想要定义变量&#xff0c;只需要使用如下命令即可。 variable_namevariable_valuevariable_name表示变量名&#xff0c;variable_value表示变量值。注意&#xff0c;等号与变量名和变量值之间不能有空格。 变量名的命名需要遵循…

C语言入门_Day7 逻辑运算

目录&#xff1a; 前言 1.逻辑运算 2.优先级 3.易错点 4.思维导图 前言 算术运算用来进行数据的计算和处理&#xff1b;比较运算是用来比较不同的数据&#xff0c;进而来决定下一步怎么做&#xff1b;除此以外还有一种运算叫做逻辑运算&#xff0c;它的应用场景也是用来影…

电脑远程接入软件可以进行文件传输吗?快解析内网穿透

电脑远程接入软件的出现&#xff0c;让我们可以在两台电脑之间进行交互和操作。但是&#xff0c;很多人对于这些软件能否进行文件传输还存在一些疑问。下面的文章将解答这个问题。 1.电脑远程接入软件可以进行文件传输。传统上&#xff0c;我们可能会通过传输线或者移动存储设…

Redis在Java中的基本使用

本片将介绍 Redis 在 Java 中的基本使用 文章目录 1、使用jedis操作redis1.1、Jedis简介1.2、引入jedis的Maven依赖1.2、获取连接1.3、使用实例 2、对于JedisPooled的使用2.1、使用JedisPooled2.2、关于连接池 3、SpringBoot下使用Redis3.1、引入Maven依赖3.2、配置Redis连接3.…

RabbitMq:Topic exchange(主题交换机)的理解和使用

RabbitMq:Topic exchange(主题交换机)的理解和使用 在RabbitMq中&#xff0c;生产者的消息都是通过交换机来接收&#xff0c;然后再从交换机分发到不同的队列中去&#xff0c;在分发的过程中交换机类型会影响分发的逻辑&#xff0c;下面主要讲解一下主题交换机。 ​ 主题交换…

pycharm上传项目到github,版本管理

前提&#xff1a;下载git 设置Git路径 登录Github 此时自动打开浏览器&#xff0c;并打开连接页面&#xff0c;点击 Authorize GitHub。登录&#xff1a; 创建本地仓库 提交到Github 填写初始提交相关信息 origin&#xff0c;它们只是远程服务器的一个别名&#xff0c;否则你就…

NPM 创建和管理组织

目录 1、创建一个组织 2、将用户帐户转换为组织 3、组织中开启双因素身份验证 3.1 关于组织的双因素身份验证 3.2 先决条件 3.3 在您的组织中要求双因素身份验证 3.4 帮助已删除的成员和外部协作者重新加入您的组织 4、重命名组织 5、删除组织 1、创建一个组织 任何n…