基于互斥锁的生产者消费者模型

文章目录

  • 生产者消费者 定义
  • 代码实现 / 思路
    • 完整代码
      • 执行逻辑 / 思路
    • 局部具体分析
      • model.cc
      • func(消费者线程)
  • 执行结果

生产者消费者 定义

生产者消费者模型 是一种常用的 并发编程模型 ,用于解决多线程或多进程环境下的协作问题。该模型包含两类角色:生产者和消费者

生产者负责生成数据,并将数据存放到共享的缓冲区中。消费者则从缓冲区中获取数据并进行处理。生产者和消费者之间通过共享的缓冲区进行数据交互。

为了确保线程安全,生产者和消费者需要遵循一些规则

  1. 如果缓冲区已满,则生产者需要等待直到有空间可用。
  2. 如果缓冲区为空,则消费者需要等待直到有数据可用。
  3. 生产者和消费者都不能访问缓冲区的内部结构,只能通过特定的接口进行操作。

在这里插入图片描述


代码实现 / 思路

完整代码

#include <iostream>
#include <string>
#include <pthread.h>
#include <unistd.h>

// 生产者消费者模型
using namespace std;

#define TNUM 4 // 定义将使用的线程数
typedef void (*func_t)(const string& name, pthread_mutex_t* pmtx, pthread_cond_t* pcond);
volatile bool quit = false; // 退出信号,默认为false

// 定义一个具有名称、函数和同步机制(互斥锁和条件变量)的线程数据结构
// 用于传递线程相关的信息和共享资源给不同的线程,实现线程间的通信和同步
class ThreadData
{
public:
    ThreadData(const string& name, func_t func, pthread_mutex_t* pmtx, pthread_cond_t* pcond)
        : _name(name), _func(func), _pmtx(pmtx), _pcond(pcond) {}

public:
    // 成员变量
    string _name; // 线程名
    func_t _func; // 函数指针
    pthread_mutex_t* _pmtx; // 互斥锁指针
    pthread_cond_t* _pcond; // 条件变量指针
};


void func1(const string& name, pthread_mutex_t* pmtx, pthread_cond_t* pcond)
{
    while(!quit)
    {
        // wait 需要在加锁和解锁之间
        pthread_mutex_lock(pmtx); // 加锁
        //
        pthread_cond_wait(pcond, pmtx); // 默认该线程在执行时,wait 代码被执行,当前线程会被立即阻塞
        cout << name << " running <-> 播放" << endl;
        pthread_mutex_unlock(pmtx); // 解锁
    }
}

void func2(const string& name, pthread_mutex_t* pmtx, pthread_cond_t* pcond)
{
    while(!quit)
    {
        // 加锁 等待 解锁
        pthread_mutex_lock(pmtx);
        pthread_cond_wait(pcond, pmtx);
        cout << name << " running <-> 下载" << endl;
        pthread_mutex_unlock(pmtx);
    }
}

void func3(const string& name, pthread_mutex_t* pmtx, pthread_cond_t* pcond)
{
   while(!quit)
   {
       // 加锁 等待 解锁
       pthread_mutex_lock(pmtx);
       pthread_cond_wait(pcond, pmtx);
       cout << name << " running <-> 刷新" << endl;
       pthread_mutex_unlock(pmtx);
   }
}

void func4(const string& name, pthread_mutex_t* pmtx, pthread_cond_t* pcond)
{
   while(!quit)
   {
       // 加锁 等待 解锁
       pthread_mutex_lock(pmtx);
       pthread_cond_wait(pcond, pmtx);
       cout << name << " running <-> 扫码用户信息" << endl;
       pthread_mutex_unlock(pmtx);
   }
}

// 线程入口函数
void* Entry(void *args)
{
    ThreadData* td = (ThreadData*)args; // 获取线程所需的数据
    td->_func(td->_name, td->_pmtx, td->_pcond);
    delete td;
    return nullptr;
}

int main()
{
    // 初始化互斥锁mtx 和 条件变量cond
    pthread_mutex_t mtx;
    pthread_cond_t cond;
    pthread_mutex_init(&mtx, nullptr);
    pthread_cond_init(&cond, nullptr);

    // 创建 TNUM 个线程,并将每个线程相关的函数和共享的互斥锁、条件变量传递给线程的入口函数 Entry。
    // 每个线程都有一个不同的名称和要执行的函数(func)
    pthread_t tids[TNUM];
    func_t funcs[TNUM] = {func1, func2, func3, func4};
    for (int i = 0; i < TNUM; i++)
    {
        string name = "Thread ";
        name += to_string(i+1);
        ThreadData *td = new ThreadData(name, funcs[i], &mtx, &cond);
        pthread_create(tids + i, nullptr, Entry, (void*)td); // 创建线程
    }

    // 调用 pthread_cond_signal 函数向条件变量发送信号,通知等待该条件的线程可以继续运行
    int cnt = 20;
    while(cnt)
    {
        cout << "resume thread run code ...." << cnt-- << endl << endl; // 打印输出当前计数器的值,并将计数器减一
        pthread_cond_signal(&cond); // 恢复线程
        sleep(1);
    }

    // 代码设置 quit 标志为 true,
    // 调用 pthread_cond_broadcast 函数向所有等待该条件的线程广播信号
    cout << "ctrl done" << endl;
    quit = true;
    pthread_cond_broadcast(&cond); // 唤醒所有等待在条件变量 cond 上的线程

    // 使用 pthread_join 等待所有线程的完成,然后销毁互斥锁和条件变量
    for(int i = 0; i < TNUM; i++)
    {
        pthread_join(tids[i], nullptr);
        cout << "thread: " << tids[i] << "quit" << endl;
    }

    pthread_mutex_destroy(&mtx);
    pthread_cond_destroy(&cond);

    return 0;
}

  1. 定义了4个线程函数 func1、func2、func3、func4,分别代表4个线程的执行逻辑。
  2. 定义了一个ThreadData类,用于封装线程相关的信息和共享资源
  3. 主函数中,创建了4个线程,并将每个线程的名称、函数指针、互斥锁和条件变量传递给ThreadData对象,然后通过pthread_create函数创建线程
  4. 主线程通过循环调用pthread_cond_signal函数向条件变量发送信号,唤醒一个等待该条件的线程,然后休眠1秒钟。
  5. 当计数器cnt减为0时,主线程设置quit标志为true,并通过pthread_cond_broadcast函数向所有等待该条件的线程广播信号,通知它们可以退出。
  6. 使用pthread_join函数等待所有线程的完成,然后销毁互斥锁和条件变量

其中,在整段代码中,func1、func2、func3和func4函数分别代表消费者,而主函数中通过循环调用pthread_cond_signal函数唤醒等待条件变量的线程部分代表生产者

具体来说:

  • func1函数代表一个消费者,它的执行逻辑是"播放"。
  • func2函数代表另一个消费者,它的执行逻辑是"下载"。
  • func3函数代表第三个消费者,它的执行逻辑是"刷新"。
  • func4函数代表第四个消费者,它的执行逻辑是"扫描用户信息"。

而在主函数中的循环调用pthread_cond_signal函数,将信号发送给条件变量cond,可以唤醒等待该条件的线程。这里的循环调用部分代表生产者,通过不断唤醒等待的消费者线程来模拟生产者产生了数据(信号)。

执行逻辑 / 思路

  1. 首先,主函数开始执行。在主函数中,初始化了互斥锁mtx条件变量cond

  2. 接下来,使用循环创建了4个线程,并将每个线程对应的名称、函数指针、互斥锁和条件变量传递给ThreadData对象,然后通过pthread_create函数创建线程。这样就创建了4个消费者线程。

  3. 主线程进入一个循环,循环执行20次。在每次循环中,输出当前计数器的值,并将计数器减一。然后通过pthread_cond_signal函数向条件变量发送信号唤醒一个等待该条件的线程。主线程休眠1秒钟,再进行下一次循环。这部分模拟了生产者产生数据的过程。

  4. 当计数器cnt减为0时,主线程quit标志设置为true,表示停止生产数据

  5. 主线程调用pthread_cond_broadcast函数向所有等待条件变量的线程广播信号,通知它们可以退出。这部分模拟了生产者通知消费者停止消费的过程

  6. 最后,主线程通过pthread_join函数等待所有线程的完成。每个消费者线程会不断地等在条件变量上,在接收到信号后执行相应的操作,直到收到停止信号。

  7. 当所有线程完成后,主线程销毁互斥锁和条件变量,程序结束。

总结起来,这段代码的逻辑是创建了4个消费者线程,每个线程都等待条件变量的信号,然后执行相应的操作。主线程作为生产者,通过发送信号唤醒消费者线程来模拟生产数据的过程。最后,当需要停止生产数据时,主线程发送停止信号给消费者线程,消费者线程收到信号后执行完当前操作后退出。整个过程实现了一个简单的生产者消费者模型。


局部具体分析

model.cc

正常编写代码时,为了不污染命名空间,避免命名冲突,一般不会直接进行 using namespcade std; 这里为了方便,直接进行引用。

#define TNUM 4 // 定义将使用的线程数
typedef void (*func_t)(const string& name, pthread_mutex_t* pmtx, pthread_cond_t* pcond);
volatile bool quit = false; // 退出信号,默认为false

// 定义一个具有名称、函数和同步机制(互斥锁和条件变量)的线程数据结构
// 用于传递线程相关的信息和共享资源给不同的线程,实现线程间的通信和同步
class ThreadData
{
public:
    ThreadData(const string& name, func_t func, pthread_mutex_t* pmtx, pthread_cond_t* pcond)
        : _name(name), _func(func), _pmtx(pmtx), _pcond(pcond) {}

public:
    // 成员变量
    string _name; // 线程名
    func_t _func; // 函数指针
    pthread_mutex_t* _pmtx; // 互斥锁指针
    pthread_cond_t* _pcond; // 条件变量指针
};

解释:

  • func_t 是一个函数指针类型,可以指向一个接受 const string& 类型参数、 pthread_mutex_t* 类型参数和 pthread_cond_t* 类型参数的函数,返回类型为 void用于后续对接线程的功能函数
  • ThreadData 是 一个具有名称、函数和同步机制(互斥锁和条件变量)的线程数据结构。用于传递线程相关的信息和共享资源给不同的线程,实现线程间的通信和同步

func(消费者线程)

void func1(const string& name, pthread_mutex_t* pmtx, pthread_cond_t* pcond)
{
    while(!quit)
    {
        // wait 需要在加锁和解锁之间
        pthread_mutex_lock(pmtx); // 加锁
        //
        pthread_cond_wait(pcond, pmtx); // 默认该线程在执行时,wait 代码被执行,当前线程会被立即阻塞
        cout << name << " running <-> 播放" << endl;
        pthread_mutex_unlock(pmtx); // 解锁
    }
}
  • func1 为例:
  1. 进入一个无限循环,直到全局变量quittrue才退出。
  2. 在循环内部,首先使用pthread_mutex_lock加锁,保证线程独占互斥锁
  3. 调用pthread_cond_wait等待条件变量,当前线程会被阻塞并释放互斥锁,直到其他线程调用pthread_cond_signalpthread_cond_broadcast来发送信号唤醒该线程。
  4. 线程被唤醒后,输出名称和"running <-> 播放"的信息
  5. 最后使用pthread_mutex_unlock解锁互斥锁

执行结果

在linux下,可以看出来:

当我们执行程序后,四个线程会不断地执行四种操作,并且在一个线程结束当前任务之前,其他线程会进行等待,最后输出线程退出信息。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/81469.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Segment Anything论文阅读笔记

Segment Anything论文阅读笔记 1. Segment Anything论文基本信息2. Segment Anything论文阅读2.1 第一遍阅读 Segment Anything2.2. 第二遍阅读 Segment Anything2.2.1. Segment Anything中相关的图表 1. Segment Anything论文基本信息 论文地址https://arxiv.org/abs/2304.02…

基于VUE3+Layui从头搭建通用后台管理系统(前端篇)八:自定义组件封装上

一、本章内容 本章实现一些自定义组件的封装,包括数据字典组件的封装、下拉列表组件封装、复选框单选框组件封装、单选框组件封装、文件上传组件封装、级联选择组件封装、富文本组件封装等。 1. 详细课程地址: 待发布 2. 源码下载地址: 待发布 二、界面预览 ![在这里插入图…

数据可视化diff工具jsondiffpatch使用学习

1.jsondiffpatch 简介 jsondiffpatch 是一个用于比较和生成 JSON 数据差异的 JavaScript 库。它可以将两个 JSON 对象进行比较&#xff0c;并生成一个描述它们之间差异的 JSON 对象。这个差异对象可以用于多种用途&#xff0c;例如&#xff1a; 生成可视化的差异报告应用差异…

【TypeScript】tsc -v 报错 —— 在此系统上禁止运行脚本

在 VS Code 终端中执行 tsc -v &#xff0c;报错 —— 在此系统上禁止运行脚本 然后 windows x &#xff0c;打开终端管理员&#xff0c;出现同样的问题 解决方法&#xff1a; 终端&#xff08;管理员&#xff09;执行以下命令&#xff1a; 出现 RemoteSigned 则代表更改成功…

SpringBoot引入外部jar打包失败解决,SpringBoot手动引入jar打包war后报错问题

前言 使用外部手动添加的jar到项目&#xff0c;打包时出现jar找不到问题解决 处理 例如项目结构如下 引入方式换成这种 <!-- 除了一下这两种引入外部jar&#xff0c;还是可以将外部jar包添加到maven中&#xff08;百度查&#xff09;--><!-- pdf转word --><…

了解生成对抗网络 (GAN)

一、介绍 Yann LeCun将其描述为“过去10年来机器学习中最有趣的想法”。当然&#xff0c;来自深度学习领域如此杰出的研究人员的赞美总是对我们谈论的主题的一个很好的广告&#xff01;事实上&#xff0c;生成对抗网络&#xff08;简称GAN&#xff09;自2014年由Ian J. Goodfel…

HTML详解连载(8)

HTML详解连载&#xff08;8&#xff09; 专栏链接 [link](http://t.csdn.cn/xF0H3)下面进行专栏介绍 开始喽浮动-产品区域布局场景 解决方法清除浮动方法一&#xff1a;额外标签发方法二&#xff1a;单伪元素法方法三&#xff1a;双伪元素法方法四&#xff1a;overflow浮动-总结…

C++头文件

C头文件 一般头文件特殊头文件windows.hbits/stdc.h 一般头文件 C头文件是一种包含预定义函数、类和变量声明的文件。它们通常用于在源代码文件中引入外部库或模块的功能。 头文件的作用是提供程序所需的声明信息&#xff0c;以便在源代码文件中使用这些声明。当你在源代码文…

Debian查询硬件状态

很早以前写过一个查询树霉派硬件状态的文章&#xff0c;用是Python写的一个小程序。里面用到了vcgencmd这个测温度的内部命令&#xff0c;但这个命令在debian里面没有&#xff0c;debian里只有lm_sensors的外部命令&#xff0c;需要安装&#xff1a;apt-get install lm_sensors…

十六、Spring Cloud Sleuth 分布式请求链路追踪

目录 一、概述1、为什么出出现这个技术&#xff1f;需要解决哪些问题2、是什么&#xff1f;3、解决 二、搭建链路监控步骤1、下载运行zipkin2、服务提供者3、服务调用者4、测试 一、概述 1、为什么出出现这个技术&#xff1f;需要解决哪些问题 2、是什么&#xff1f; 官网&am…

python、numpy、pytorch中的浅拷贝和深拷贝

1、Python中的浅拷贝和深拷贝 import copya [1, 2, 3, 4, [11, 22, 33, [111, 222]]] b a c a.copy() d copy.deepcopy(a)print(before modify\r\n a\r\n, a, \r\n,b a\r\n, b, \r\n,c a.copy()\r\n, c, \r\n,d copy.deepcopy(a)\r\n, d, \r\n)before modify a [1, 2…

【学会动态规划】单词拆分(24)

目录 动态规划怎么学&#xff1f; 1. 题目解析 2. 算法原理 1. 状态表示 2. 状态转移方程 3. 初始化 4. 填表顺序 5. 返回值 3. 代码编写 写在最后&#xff1a; 动态规划怎么学&#xff1f; 学习一个算法没有捷径&#xff0c;更何况是学习动态规划&#xff0c; 跟我…

VMWare Workstation 17 Pro 网络设置 桥接模式 网络地址转换(NAT)模式 仅主机模式

文章目录 网络模式配网要求CentOSDHCP虚拟网络桥接模式默认配置测试手动配置测试 网络地址转发模式 (NAT)还原配置虚拟网络配置默认配置测试手动配置测试 仅主机模式 网络模式 桥接模式: 主机与虚拟机对等, 虚拟机注册到主机所在的局域网, 会占用该网络的IP该局域网内的所有机…

Linux常用命令——dig命令

在线Linux命令查询工具 dig 域名查询工具 补充说明 dig命令是常用的域名查询工具&#xff0c;可以用来测试域名系统工作是否正常。 语法 dig(选项)(参数)选项 <服务器地址>&#xff1a;指定进行域名解析的域名服务器&#xff1b; -b<ip地址>&#xff1a;当主…

Scala 如何调试隐式转换--隐式转换代码的显示展示

方法1 在需要隐式转换的地方&#xff0c;把需要的参数显示的写出。 略方法2&#xff0c;查看编译代码 在terminal中 利用 scalac -Xprint:typer xxx.scala方法打印添加了隐式值的代码示例。 对于复杂的工程来说&#xff0c;直接跑到terminal执行 scalac -Xprint:typer xxx.…

学习笔记:Opencv实现拉普拉斯图像锐化算法

2023.8.19 为了在暑假内实现深度学习的进阶学习&#xff0c;Copy大神的代码&#xff0c;记录学习日常 图像锐化的百科&#xff1a; 图像锐化算法-sharpen_lemonHe_的博客-CSDN博客 在环境配置中要配置opencv&#xff1a; pip install opencv-contrib-python Code and lena.png…

Spring Boot 知识集锦之Spring-Batch批处理组件详解

文章目录 0.前言1.参考文档2.基础介绍2.1. 核心组件 3.步骤3.1. 引入依赖3.2. 配置文件3.3. 核心源码 4.示例项目5.总结 0.前言 背景&#xff1a; 一直零散的使用着Spring Boot 的各种组件和特性&#xff0c;从未系统性的学习和总结&#xff0c;本次借着这个机会搞一波。共同学…

ElasticSearch DSL语句(bool查询、算分控制、地理查询、排序、分页、高亮等)

文章目录 DSL 查询种类DSL query 基本语法1、全文检索2、精确查询3、地理查询4、function score &#xff08;算分控制&#xff09;5、bool 查询 搜索结果处理1、排序2、分页3、高亮 RestClient操作 DSL 查询种类 查询所有&#xff1a;查询所有数据&#xff0c;一般在测试时使…

【unity】Pico VR 开发笔记(基础篇)

Pico VR 开发笔记(基础篇) XR Interaction Tooikit 版本 2.3.2 一、环境搭建 其实官方文档已经写的很详细了&#xff0c;这里只是不废话快速搭建&#xff0c;另外有一项官方说明有误的&#xff0c;补充说明一下&#xff0c;在开发工具部分说明 插件安装——安装pico的sdk和XR…