STM32——RTC实时时钟

文章目录

  • Unix时间戳
    • UTC/GMT
  • 时间戳转换
  • BKP简介
  • BKP基本结构
  • 读写BKP备份寄存器
    • 电路设计
    • 关键代码
  • RTC简介
  • RTC框图
  • RTC基本结构
  • 硬件电路
  • RTC操作注意事项
  • 读写实时时钟
    • 电路设计
    • 关键代码

Unix时间戳

  • Unix 时间戳(Unix Timestamp)定义为从UTC/GMT的1970年1月1日0时0分0秒开始所经过的秒数,不考虑闰秒
  • 时间戳存储在一个秒计数器中,秒计数器为32位/64位的整型变量
  • 世界上所有时区的秒计数器相同,不同时区通过添加偏移来得到当地时间
  • 底层使用秒计数器可以节省硬件设计电路,计算时间间隔,存储方便

在这里插入图片描述

UTC/GMT

  • GMT(Greenwich Mean Time)格林尼治标准时间是一种以地球自转为基础的时间计量系统。它将地球自转一周的时间间隔等分为24小时,以此确定计时标准

  • UTC(Universal Time Coordinated)协调世界时是一种以原子钟为基础的时间计量系统。它规定铯133原子基态的两个超精细能级间在零磁场下跃迁辐射9,192,631,770周所持续的时间为1秒。当原子钟计时一天的时间与地球自转一周的时间相差超过0.9秒时,UTC会执行闰秒来保证其计时与地球自转的协调一致

时间戳转换

C语言的time.h模块提供了时间获取和时间戳转换的相关函数,可以方便地进行秒计数器、日期时间和字符串之间的转换

在这里插入图片描述

  • time_t 是int64数据类型
  • struct tm 这是一个用来保存时间和日期的结构。
struct tm {
   int tm_sec;         /* 秒,范围从 0 到 59        */
   int tm_min;         /* 分,范围从 0 到 59        */
   int tm_hour;        /* 小时,范围从 0 到 23        */
   int tm_mday;        /* 一月中的第几天,范围从 1 到 31    */
   int tm_mon;         /* 月,范围从 0 到 11        */
   int tm_year;        /* 自 1900 年起的年数        */
   int tm_wday;        /* 一周中的第几天,范围从 0 到 6    */
   int tm_yday;        /* 一年中的第几天,范围从 0 到 365    */
   int tm_isdst;       /* 夏令时                */
};

在这里插入图片描述

在线工具:在线时间戳转换工具

菜鸟教程:C 标准库 - <time.h>

localtime和mktime的实例:
在这里插入图片描述

注意:mktime的参数不加const,因为该参数既是输入参数也是输出参数,因为计算出星期后会填写回去

strftime函数:按照格式输出

在这里插入图片描述

BKP简介

  • BKP(Backup Registers)备份寄存器【需要VBAT引脚供电才能维持,掉电会清零,即使主电源掉电、系统复位也不会清零】【本质是RAM存储器,掉电丢失】
  • BKP可用于存储用户应用程序数据。当VDD(2.0~3.6V)电源被切断,他们仍然由VBAT(1.8~3.6V)维持供电。当系统在待机模式下被唤醒,或系统复位或电源复位时,他们也不会被复位【VBAT和VDD共地即可】
  • TAMPER引脚产生的侵入事件【电平检测】将所有备份寄存器BKP内容清除,会申请中断【VDD断电也会工作】
  • RTC引脚输出RTC校准时钟、RTC闹钟脉冲或者秒脉冲【引脚2同一个时间内只能使用一个功能】
  • 存储RTC时钟校准寄存器
  • 用户数据存储容量:
    • 20字节(中容量和小容量)/ 84字节(大容量和互联型)

在这里插入图片描述

BKP基本结构

在这里插入图片描述
当VDD有电时就使用VDD供电,没有时则使用功能VBAT供电

读写BKP备份寄存器

电路设计

在这里插入图片描述

关键代码

Key.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"

void Key_Init(void)
{
	RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);
	
	GPIO_InitTypeDef GPIO_InitStructure;
	GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
	GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_11;
	GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
	GPIO_Init(GPIOB, &GPIO_InitStructure);
}

uint8_t Key_GetNum(void)
{
	uint8_t KeyNum = 0;
	if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_1) == 0)
	{
		Delay_ms(20);
		while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_1) == 0);
		Delay_ms(20);
		KeyNum = 1;
	}
	if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_11) == 0)
	{
		Delay_ms(20);
		while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_11) == 0);
		Delay_ms(20);
		KeyNum = 2;
	}
	
	return KeyNum;
}

Key.h

#ifndef __KEY_H
#define __KEY_H

void Key_Init(void);
uint8_t Key_GetNum(void);

#endif

main.c

按下按键,写入备份寄存器,然后再读出来

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Key.h"

uint8_t KeyNum;

uint16_t ArrayWrite[] = {0x1234, 0x5678};
uint16_t ArrayRead[2];

int main(void)
{
	OLED_Init();
	Key_Init();
	
	OLED_ShowString(1, 1, "W:");
	OLED_ShowString(2, 1, "R:");
	
	//开启PWR和BKP时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);
	//在pwrd的库函数中,备份寄存器访问使能,设置PWR_CR的DBP,使能对BKP和RTC的访问
	PWR_BackupAccessCmd(ENABLE);
	
	while (1)
	{
		KeyNum = Key_GetNum();
		
		if (KeyNum == 1)
		{
			ArrayWrite[0] ++;
			ArrayWrite[1] ++;
			
			BKP_WriteBackupRegister(BKP_DR1, ArrayWrite[0]);//写备份寄存器
			BKP_WriteBackupRegister(BKP_DR2, ArrayWrite[1]);
			
			OLED_ShowHexNum(1, 3, ArrayWrite[0], 4);
			OLED_ShowHexNum(1, 8, ArrayWrite[1], 4);
		}
		
		ArrayRead[0] = BKP_ReadBackupRegister(BKP_DR1);//读备份寄存器
		ArrayRead[1] = BKP_ReadBackupRegister(BKP_DR2);
		
		OLED_ShowHexNum(2, 3, ArrayRead[0], 4);
		OLED_ShowHexNum(2, 8, ArrayRead[1], 4);
	}
}

RTC简介

  • RTC(Real Time Clock)实时时钟
  • RTC是一个独立的定时器,可为系统提供时钟和日历的功能
  • RTC和时钟配置系统处于后备区域,系统复位时数据不清零,VDD(2.0~3.6V)断电后可借助VBAT(1.8~3.6V)供电继续走时【和BKP一样,属于后备区域】
  • 32位的可编程计数器,可对应Unix时间戳的秒计数器【简化电路设计】
  • 20位的可编程预分频器,可适配不同频率的输入时钟【变成1Hz频率】
  • 可选择三种RTC时钟源(PTCCLK):
    • HSE时钟除以128(通常为8MHz/128)
    • LSE振荡器时钟(通常为32.768KHz)【经过15位分频器自然溢出得到1hz频率】
    • LSI振荡器时钟(40KHz)

RTC 复位和主电源掉电后,数据不丢失是BKP来实现的

注意:整个stm32有四个时钟源

  • HSE =高速外部时钟信号
  • HSI = 高速内部时钟信号
  • LSl=低速内部时钟信号【低速时钟供RTC和看门狗】
  • LSE =低速外部时钟信号【低速时钟供RTC和看门狗】

RTC框图

在这里插入图片描述

  • 灰色区域属于后备区域,待机时会供电
  • RTC_ALR是闹钟,当值与RTC_CNT相同时会产生信号,让stm退出待机
  • 中断信号有三种:秒中断、计数器溢出中断(2106年中断)、闹钟中断
  • 闹钟信号和wkup引脚都可以唤醒设备(10引脚)
    在这里插入图片描述
  • stm32芯片框图,常用32.768KHz,其他两路都是备用方案,主要工作是给系统主时钟和看门狗使用。且中间分频器是可以通过VBAT供电,而另外两路在掉电后时钟会暂停

RTC基本结构

在这里插入图片描述

  • 余数寄存器是一个自减计数器,存储当前计数值
  • 重装寄存器是计数目标,决定分频值

硬件电路

在这里插入图片描述

stm内部供电方案中设计了供电开关,有VDD用VDD,没有则用VBAT
在这里插入图片描述
stm32自带RTC晶振电路,如图所示是32.768KHz和8MHz的晶振
在这里插入图片描述

RTC操作注意事项

  • 执行以下操作将使能对BKP和RTC的访问:【初始化要完成如下操作】
    • 设置RCC_APB1ENR的PWREN和BKPEN,使能PWR和BKP时钟
    • 设置PWR_CR的DBP,使能对BKP和RTC的访问
  • 若在读取RTC寄存器时,RTC的APB1接口曾经处于禁止状态,则软件首先必须等待RTC_CRL寄存器中的RSF位(寄存器同步标志)被硬件置1【等待同步】
    • PCLK1和RTCCLK两个时钟频率不一致,PCLK1在掉电后会停止,如果使用APB1总线开启就去读RTC的值会读到0,需要等待RTC_CNT内有值
  • 必须设置RTC_CRL寄存器中的CNF位,使RTC进入配置模式后,才能写入RTC_PRL、RTC_CNT、RTC_ALR寄存器
  • 对RTC任何寄存器的写操作,都必须在前一次写操作结束后进行。可以通过查询RTC_CR寄存器中的RTOFF状态位,判断RTC寄存器是否处于更新中。仅当RTOFF状态位是1时,才可以写入RTC寄存器【等待上一步完成】

上述注意事项涉及到如下的框图:
在这里插入图片描述

PCLK1和RTCCLK两个时钟频率不一致,这会导致读取和写入操作不能立刻在寄存器中,需要通过RTC_CRL寄存器的RSF和CNF位去判断在RTCCLK频率下内部电路是否完成了数据的变动。

读写实时时钟

电路设计

在这里插入图片描述

关键代码

MyRTC.c

库函数在rcc和rtc里面

#include "stm32f10x.h"                  // Device header
#include <time.h>//编译器内置的库函数

uint16_t MyRTC_Time[] = {2023, 1, 1, 23, 59, 55};

void MyRTC_SetTime(void);

void MyRTC_Init(void)
{
	//开启PWR和BKP时钟
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);
	//在pwrd的库函数中,备份寄存器访问使能,设置PWR_CR的DBP,使能对BKP和RTC的访问
	PWR_BackupAccessCmd(ENABLE);
	
	//复位的时候RTC计数器会清零,通过BKP的寄存器可以判断是否使用备用电源,如果使用则RTC始终不用重新初始化
	if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5)
	{
		RCC_LSEConfig(RCC_LSE_ON);//开启LSE
		//LSE开启之后不是立马就工作,需要判断一下标志位
		while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) != SET);
		
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);//选择RTCCLK时钟为LSE
		RCC_RTCCLKCmd(ENABLE);//使能
		//可加可不加下面2行
		RTC_WaitForSynchro();//等待同步
		RTC_WaitForLastTask();//等待上一次操作完成
		
		RTC_SetPrescaler(32768 - 1);//设置预分频的值、该函数内部会调用RTC_EnterConfigMode()和退出配置的代码,设置RTC_CRL寄存器中的CNF位,此时RTC寄存器都可以被使用
		RTC_WaitForLastTask();//等待上一次操作完成
		
		MyRTC_SetTime();
		
		BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);
	}
	else
	{
		RTC_WaitForSynchro();//等待同步
		RTC_WaitForLastTask();//等待上一次操作完成
	}
}

//如果LSE无法起振导致程序卡死在初始化函数中
//可将初始化函数替换为下述代码,使用LSI当作RTCCLK
//LSI无法由备用电源供电,故主电源掉电时,RTC走时会暂停
/* 
void MyRTC_Init(void)
{
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);
	RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);
	
	PWR_BackupAccessCmd(ENABLE);
	
	if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5)
	{
		RCC_LSICmd(ENABLE);
		while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);//LSI是40khz,预分频系数为40000-1
		
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);
		RCC_RTCCLKCmd(ENABLE);
		
		RTC_WaitForSynchro();
		RTC_WaitForLastTask();
		
		RTC_SetPrescaler(40000 - 1);
		RTC_WaitForLastTask();
		
		MyRTC_SetTime();
		
		BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);
	}
	else
	{
		RCC_LSICmd(ENABLE);
		while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);
		
		RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);
		RCC_RTCCLKCmd(ENABLE);
		
		RTC_WaitForSynchro();
		RTC_WaitForLastTask();
	}
}*/

void MyRTC_SetTime(void)
{
	time_t time_cnt;
	struct tm time_date;
	
	time_date.tm_year = MyRTC_Time[0] - 1900;
	time_date.tm_mon = MyRTC_Time[1] - 1;
	time_date.tm_mday = MyRTC_Time[2];
	time_date.tm_hour = MyRTC_Time[3];
	time_date.tm_min = MyRTC_Time[4];
	time_date.tm_sec = MyRTC_Time[5];
	//mktime始终是0时区
	time_cnt = mktime(&time_date) - 8 * 60 * 60;
	
	RTC_SetCounter(time_cnt);//写入CNT计数器
	RTC_WaitForLastTask();//等待上一次操作完成
}

void MyRTC_ReadTime(void)
{
	time_t time_cnt;
	struct tm time_date;
	
	time_cnt = RTC_GetCounter() + 8 * 60 * 60;//RTC_GetCounter读取秒计数器
	//因为是东八区,多了8*60*60秒
	
	time_date = *localtime(&time_cnt);//stm32内置的库函数弃用gmtime函数,只用localtime,同时该函数不能确定时区,始终是0时区
	
	MyRTC_Time[0] = time_date.tm_year + 1900;
	MyRTC_Time[1] = time_date.tm_mon + 1;
	MyRTC_Time[2] = time_date.tm_mday;
	MyRTC_Time[3] = time_date.tm_hour;
	MyRTC_Time[4] = time_date.tm_min;
	MyRTC_Time[5] = time_date.tm_sec;
}

MyRTC.h

#ifndef __MYRTC_H
#define __MYRTC_H

extern uint16_t MyRTC_Time[];

void MyRTC_Init(void);
void MyRTC_SetTime(void);
void MyRTC_ReadTime(void);

#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyRTC.h"

int main(void)
{
	OLED_Init();
	MyRTC_Init();
	
	OLED_ShowString(1, 1, "Date:XXXX-XX-XX");
	OLED_ShowString(2, 1, "Time:XX:XX:XX");
	OLED_ShowString(3, 1, "CNT :");
	OLED_ShowString(4, 1, "DIV :");
	
	while (1)
	{
		MyRTC_ReadTime();
		//显示日期
		OLED_ShowNum(1, 6, MyRTC_Time[0], 4);
		OLED_ShowNum(1, 11, MyRTC_Time[1], 2);
		OLED_ShowNum(1, 14, MyRTC_Time[2], 2);
		//显示时间
		OLED_ShowNum(2, 6, MyRTC_Time[3], 2);
		OLED_ShowNum(2, 9, MyRTC_Time[4], 2);
		OLED_ShowNum(2, 12, MyRTC_Time[5], 2);
		
		OLED_ShowNum(3, 6, RTC_GetCounter(), 10);
		OLED_ShowNum(4, 6, RTC_GetDivider(), 10);//RTC_GetDivider可以获取更加精细的时间
	}
}

参考视频:江科大自化协

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/81431.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

周易卦爻解读笔记——节卦

第六十卦节 水泽节 坎上兑下 节卦由泰卦所变&#xff0c;泰卦的九三与六五换位。象征节制有度。 地天泰 节卦是涣卦的覆卦&#xff0c;序卦传【物不可以终离&#xff0c;故受之以节】 节&#xff1a;亨。苦节不可贞。 节卦通达&#xff0c;但不可一直过度辛苦的节制。 彖曰…

机器学习|Softmax 回归的数学理解及代码解析

机器学习&#xff5c;Softmax 回归的数学理解及代码解析 Softmax 回归是一种常用的多类别分类算法&#xff0c;适用于将输入向量映射到多个类别的概率分布。在本文中&#xff0c;我们将深入探讨 Softmax 回归的数学原理&#xff0c;并提供 Python 示例代码帮助读者更好地理解和…

JVM面试题-1

1、什么是JVM内存结构&#xff1f; jvm将虚拟机分为5大区域&#xff0c;程序计数器、虚拟机栈、本地方法栈、java堆、方法区&#xff1b; 程序计数器&#xff1a;线程私有的&#xff0c;是一块很小的内存空间&#xff0c;作为当前线程的行号指示器&#xff0c;用于记录当前虚拟…

【以太网通信】RS232 串口转以太网

最近和 RK 研发同事在调试通信接口&#xff0c;排查与定位 RK3399 接收数据出错的问题。FPGA 与 RK3399 之间使用一路 RS232 串口进行通信&#xff0c;由于串口数据没有分包&#xff0c;不方便排查问题&#xff0c;想到可以开发一个 RS232 串口转以太网的工具&#xff0c;将串口…

nginx部署时http接口正常,ws接口404

可以这么配置 map $http_upgrade $connection_upgrade {default upgrade; close; }upstream wsbackend{server ip1:port1;server ip2:port2;keepalive 1000; }server {listen 20038;location /{ proxy_http_version 1.1;proxy_pass http://wsbackend;proxy_redirect off;proxy…

谷歌浏览器插件篇之console Importer

前言 作为一名前端开发者&#xff0c;相信在开发实践中&#xff0c;使用过诸多第三方库。譬如&#xff1a;lodash、moment、dayjs、antd等数不胜数。 然每每使用&#xff0c;经起繁琐&#xff0c;便令人有反抗之意。其步骤如下&#xff1a;首先要在搭建好的项目里&#xff0c…

学习笔记:Opencv实现限制对比度得自适应直方图均衡CLAHE

2023.8.19 为了完成深度学习的进阶&#xff0c;得学习学习传统算法拓展知识面&#xff0c;记录自己的学习心得 CLAHE百科&#xff1a; 一种限制对比度自适应直方图均衡化方法&#xff0c;采用了限制直方图分布的方法和加速的插值方法 clahe&#xff08;限制对比度自适应直方图…

C++ string类详解

⭐️ string string 是表示字符串的字符串类&#xff0c;该类的接口与常规容器的接口基本一致&#xff0c;还有一些额外的操作 string 的常规操作&#xff0c;在使用 string 类时&#xff0c;需要使用 #include <string> 以及 using namespace std;。 ✨ 帮助文档&…

4 STM32标准库函数 之 FLASH存储器(FLASH)所有函数的介绍及使用

3 STM32标准库函数 之 FLASH存储器所有函数的介绍及使用 1. 图片有格式2 文字无格式二、FLASH 库函数固件库函数预览2.1 函数FLASH_SetLatency2.2 函数FLASH_HalfCycleAccessCmd2.3 函数FLASH_PrefetchBufferCmd2.4 函数FLASH_Unlock2.5 函数FLASH_Lock2.6 函数FLASH_ErasePage…

音视频 FFmpeg音视频处理流程

ffmpeg -i test_1920x1080.mp4 -acodec copy -vcodec libx264 -s 1280x720 test_1280x720.flv推荐一个零声学院项目课&#xff0c;个人觉得老师讲得不错&#xff0c;分享给大家&#xff1a; 零声白金学习卡&#xff08;含基础架构/高性能存储/golang云原生/音视频/Linux内核&am…

GAN!生成对抗网络GAN全维度介绍与实战

目录 一、引言1.1 生成对抗网络简介1.2 应用领域概览1.3 GAN的重要性 二、理论基础2.1 生成对抗网络的工作原理2.1.1 生成器生成过程 2.1.2 判别器判别过程 2.1.3 训练过程训练代码示例 2.1.4 平衡与收敛 2.2 数学背景2.2.1 损失函数生成器损失判别器损失 2.2.2 优化方法优化代…

Linux设置临时目录路径的解决方案

大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…

第 7 章 排序算法(1)(介绍,分类,时间复杂度,空间复杂度)

7.1排序算法的介绍 排序也称排序算法(Sort Algorithm)&#xff0c;排序是将一组数据&#xff0c;依指定的顺序进行排列的过程。 7.2排序的分类&#xff1a; 内部排序: 指将需要处理的所有数据都加载到**内部存储器(内存)**中进行排序。外部排序法&#xff1a; 数据量过大&am…

安全学习DAY18_信息打点-APP资产搜集

信息打点-APP资产&静态提取&动态抓包&动态调试 文章目录 信息打点-APP资产&静态提取&动态抓包&动态调试本节知识&思维导图本节使用到的链接&工具 如何获取目标APP从名称中获取APP从URL获取APP APP搜集资产信息APP提取信息分类信息提取方式信息…

RPA机器人《国网电力》电力行业实施案例-基层减负 提质增效

背景&#xff1a;随着国网战略目标加速落地&#xff0c;数字化转型和精益化管理深化推进&#xff0c;各供电公司亟待突破精细化管控不深入、执行标准不够统一、系统数据不够融通等制约工作质效提升的能力瓶颈&#xff0c;针对这些问题&#xff0c;决定引入诸如RPA、OCR等技术&a…

深入探索:Kali Linux 网络安全之旅

目录 前言 访问官方网站 导航到下载页面 启动后界面操作 前言 "Kali" 可能指的是 Kali Linux&#xff0c;它是一种基于 Debian 的 Linux 发行版&#xff0c;专门用于渗透测试、网络安全评估、数字取证和相关的安全任务。Kali Linux 旨在提供一系列用于测试网络和…

C语言刷题指南(二)

&#x1f4d9;作者简介&#xff1a; 清水加冰&#xff0c;目前大二在读&#xff0c;正在学习C/C、Python、操作系统、数据库等。 &#x1f4d8;相关专栏&#xff1a;C语言初阶、C语言进阶、C语言刷题训练营、数据结构刷题训练营、有感兴趣的可以看一看。 欢迎点赞 &#x1f44d…

回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现WOA-BP鲸鱼优化算法优化BP神经网络多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基本…

Linux 内存管理 pt.1

今天我们来学习一下 Linux 操作系统核心之一&#xff1a;内存 跟 CPU 一样&#xff0c;内存也是操作系统最核心的功能之一&#xff0c;内存主要用来存储系统和程序的指令、数据、缓存等 关于内存的学习&#xff0c;我会尽量以通俗易懂的方式且分成多篇文章去讲解 那么今天在 pt…

史上最简洁实用人工神经元网络c++编写202301

这是史上最简单、清晰…… C语言编写的 带正向传播、反向传播(Forward ……和Back Propagation&#xff09;……任意Nodes数的人工神经元神经网络……。 大一学生、甚至中学生可以读懂。 适合于&#xff0c;没学过高数的程序员……照猫画虎编写人工智能、深度学习之神经网络……