【论文解读】Hybrid-SORT: Weak Cues Matter for Online Multi-Object Tracking

因为Hybrid-SORT的baseline是基于OCSORT进行改进的,在这之前建议先了解byteTrack和【】的相关知识

1.介绍

1.1 基本框架

多目标跟踪(MOT)将问题分为两个子任务。第一个任务是检测每个帧中的对象。第二个任务是将它们在不同的框架中联系起来。关联任务主要通过显式或隐式地利用强线索来解决,包括空间和外观信息。

1.2 当前方法的局限性

当两个物体在当前帧中高度重叠时,检测和估计轨迹位置之间的交集(IoU)会变得模糊,两个物体的外观特征都被前景特征所主导。

2. Hybrid-SORT

修改了当前最先进的SORT-like算法OCSORT作为我们的强基线。首先,对OC-SORT中的速度方向建模进行修正,即以观测为中心的动量(OCM),将盒中心扩展到四个盒角,将固定的时间间隔扩展到多个时间间隔;其次,我们在ByteTrack之后加入了一个额外的低置信度检测关联阶段。

2.1 弱条件建模

2.1.1 Tracklet 置信度建模

 增加了两个额外的状态:轨迹置信度c及其速度分量\dot{c}

如下图所示,Kalman Filter在试图估计置信状态的突然变化时表现出明显的滞后,且置信度状态的变化趋势呈现出明显方向性

 基于以上特点,因此本文使用基于轨迹历史的简单线性预测来估计轨迹置信度

 置信度代价计算为根据式4估计的轨迹置信度\widehat{c}_{trk}与检测置信度c_{det}之间的绝对差值

2.1.2 Height Modulated IoU(HMIOU)

引入height状态有助于提高association :

(1)物体的高度在一定程度上反映了深度信息,使得高度状态成为区分高度重叠对象的有效线索。

(2)其次,高度状态对不同姿态具有较强的鲁棒性,是一种准确估计的状态,是物体的高质量表征。

公式化表述为:

HIoU代表高度状态,这是一个弱线索,而IoU代表空间信息,这是一个强线索,我们使用HIoU来调制IoU,实现对遮挡或聚类对象的增强识别

2.2 Hybrid-SORT

2.2.1 Robust OCM

2.2.1.1 原始OCM存在的局限性

 原始OCM的建模容易受到固定时间间隔和稀疏状态(即只有目标中心)引起的噪声的影响。

2.2.1.2 Robust OCM

  • 首先,将3帧的固定时间间隔扩展为1 ~ 3的多个时间间隔的叠加;
  • 其次,我们用物体的四个角代替它的中心点来计算速度方向。

避免由于姿态的突然变化,轨迹和轨迹到检测中心的速度方向可能完全相反,从而导致匹配错误

 

2.2.2 外观建模

 首先检测对象,然后将结果裁剪的补丁提供给ReID模型。我们使用指数移动平均(EMA)对轨迹图外观信息建模,并利用余弦距离作为度量来计算轨迹图外观特征与检测外观特征之间的相似度。

2.2.3 算法架构

关联阶段主要包括三个阶段:第一阶段是高置信度对象的关联阶段,第二阶段是低置信度对象的关联阶段(ByteTrack中的BYTE),第三阶段是用最后一次检测恢复丢失的轨迹(OC-SORT中的OCR)。

3.代码

3.1 卡尔曼滤波器KalmanBoxTracker建模

3.1.1 引入轨迹置信度c及其速度分量\dot{c}·

        if not orig:
          from .kalmanfilter_score_new import KalmanFilterNew_score_new as KalmanFilter_score_new
          self.kf = KalmanFilter_score_new(dim_x=9, dim_z=5)

3.1.2 轨迹置信度的预测

简单线性预测来估计轨迹置信度

        if not self.confidence_pre:
            return self.history[-1], np.clip(self.kf.x[3], self.args.track_thresh, 1.0),
                    np.clip(self.confidence, 0.1, self.args.track_thresh)
        else:
            return self.history[-1], np.clip(self.kf.x[3], self.args.track_thresh, 1.0), 
                   np.clip(self.confidence - (self.confidence_pre - self.confidence), 0.1, self.args.track_thresh)

返回值分别是 分别是九位预测量,置信度预测值,置信度的速度分量\dot{c}·

3.2 Robust OCM

3.2.1 四个角代替它的中心点

 lt, rt, lb, rb : 代表bbox四个角点的速度

    Y1, X1 = speed_direction_batch_lt(detections, previous_obs)
    Y2, X2 = speed_direction_batch_rt(detections, previous_obs)
    Y3, X3 = speed_direction_batch_lb(detections, previous_obs)
    Y4, X4 = speed_direction_batch_rb(detections, previous_obs)
    cost_lt = cost_vel(Y1, X1, trackers, lt, detections, previous_obs, vdc_weight)
    cost_rt = cost_vel(Y2, X2, trackers, rt, detections, previous_obs, vdc_weight)
    cost_lb = cost_vel(Y3, X3, trackers, lb, detections, previous_obs, vdc_weight)
    cost_rb = cost_vel(Y4, X4, trackers, rb, detections, previous_obs, vdc_weight)

    angle_diff_cost = cost_lt + cost_rt + cost_lb + cost_rb

speed_direction_batch_XX用来计算四个角点的速度

cost_vel 用来计算某个交点速度的cost

3.3 Height Modulated IoU(HMIOU)

def hmiou(bboxes1, bboxes2):
    """
    Height_Modulated_IoU
    """
    bboxes2 = np.expand_dims(bboxes2, 0)
    bboxes1 = np.expand_dims(bboxes1, 1)

    yy11 = np.maximum(bboxes1[..., 1], bboxes2[..., 1])
    yy12 = np.minimum(bboxes1[..., 3], bboxes2[..., 3])

    yy21 = np.minimum(bboxes1[..., 1], bboxes2[..., 1])
    yy22 = np.maximum(bboxes1[..., 3], bboxes2[..., 3])
    o = (yy12 - yy11) / (yy22 - yy21)

    xx1 = np.maximum(bboxes1[..., 0], bboxes2[..., 0])
    yy1 = np.maximum(bboxes1[..., 1], bboxes2[..., 1])
    xx2 = np.minimum(bboxes1[..., 2], bboxes2[..., 2])
    yy2 = np.minimum(bboxes1[..., 3], bboxes2[..., 3])
    w = np.maximum(0., xx2 - xx1)
    h = np.maximum(0., yy2 - yy1)
    wh = w * h
    o *= wh / ((bboxes1[..., 2] - bboxes1[..., 0]) * (bboxes1[..., 3] - bboxes1[..., 1])
        + (bboxes2[..., 2] - bboxes2[..., 0]) * (bboxes2[..., 3] - bboxes2[..., 1]) - wh)
    return (o)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/81266.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现CSO-SVM布谷鸟优化算法优化支持向量机多输入单输出回归预测(多指标,多图)效果一…

matlab 点云精配准(1)——point to point ICP(点到点的ICP)

目录 一、算法原理参考文献二、代码实现三、结果展示四、参考链接本文由CSDN点云侠原创,爬虫自重。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫。 一、算法原理 参考文献 [1] BESL P J,MCKAY N D.A method for registration of 3-Dshapes[J].IEEE Tran…

2.创建小程序

创建 在开发工具中,选择小程序,点击加号 填写小程序信息,模板使用的是TS+Sass 编辑器的工作区 目录结构 项目使用的是ts的模板,目录结构和js的有一点差异,目录结构如下: miniprogram:小程序根目录 —pages:小程序页面目录 ——xxx:页面目录,一个页面对应一个目…

JVM的前世今生之类加载过程

1. 什么是JVM VM是JavaVirtualMachine(Java虚拟机)的缩写,JVM是一种用于计算设备的规范,它是一个虚构出来的计算机,是通过在实际的计算机上仿真模拟各种计算机功能来实现的。它可以实现跨操作系统运行,即一…

Java进阶篇--迭代器模式

目录 同步迭代器(Synchronous Iterator): Iterator 接口 常用方法: 注意: 扩展小知识: 异步迭代器(Asynchronous Iterator): 常用的方法 注意: 总结&#xff1a…

Android Alarm闹钟API使用心得

前言 有什么办法可以在不打开App的时候,也能够触发一些操作呢?比如说发送通知,解决这个需求的办法有很多种选择,比如说官方推荐的WorkManager API,可以在后台执行一次性、耗时、定时的任务,但WorkManager是…

如何创建和查看软链接和硬链接?这二者的区别是什么?

索引节点(inode)硬链接创建硬链接查看硬链接 软链接创建软链接查看软链接 inode编号妙用总结软链接和硬链接的区别感谢 💖 hello大家好😊 在linux中,文件链接可以使多个文件名引用同一个文件。有两种方式可以创建指向同…

我能“C”——数据的存储

目录 1. 数据类型介绍 1.1 类型的基本归类: 2. 整形在内存中的存储 2.1 原码、反码、补码 2.2 大小端介绍 2.3 练习 3. 浮点型在内存中的存储 3.1 一个例子 3.2 浮点数存储规则 1. 数据类型介绍 char // 字符数据类型 short // 短整…

Jmeter 分布式性能测试避坑指南

在做后端服务器性能测试中,我们会经常听到分布式。那你,是否了解分布式呢?今天,我们就来给大家讲讲,在企业实战中,如何使用分布式进行性能测试,实战过程中,又有哪些地方要特别注意&a…

Log4net在.Net Winform项目中的使用

引言: Log4net是一个流行的日志记录工具,可以帮助开发人员在应用程序中实现高效的日志记录。本文将提供一个详细的分步骤示例,来帮助您在.Net Winform项目中使用Log4net。 目录 一、安装Log4net二、配置Log4net三、在项目中使用Log4net四、初…

【Kubernetes】Kubernetes的Pod控制器

Pod控制器 一、Pod 控制器的概念1. Pod 控制器及其功用2. Pod 控制器有多种类型2.1 ReplicaSet2.2 Deployment2.3 DaemonSet2.4 StatefulSet2.5 Job2.6 Cronjob 3. Pod 与控制器之间的关系 二、Pod 控制器的使用1. Deployment2. SatefulSet2.1 为什么要有headless?2…

最新AI系统ChatGPT程序源码/支持GPT4/自定义训练知识库/GPT联网/支持ai绘画(Midjourney)+Dall-E2绘画/支持MJ以图生图

一、前言 SparkAi系统是基于国外很火的ChatGPT进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。 那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图文教程吧&#xff01…

Python编程——列表解析与常用操作

作者:Insist-- 个人主页:insist--个人主页 本文专栏:Python专栏 专栏介绍:本专栏为免费专栏,并且会持续更新python基础知识,欢迎各位订阅关注。 目录 一、列表是什么? 二、列表的特点 1、元素…

Java --- 二维数组

一、二维数组的定义 public class TwoArrayTest {public static void main(String[] args) {//二维数组声明与初始化//方式1:静态初始化int[][] arr new int[][]{{1,2,3},{1,2,3},{1,2,3}};//方式2:动态初始化int[][] arr2 new int[3][3];arr2[0][1] …

虚幻官方项目《CropOut》技术解析 之 程序化岛屿生成器(IslandGenerator)

开个新坑详细分析一下虚幻官方发布的《CropOut》,文章会同步发布到我在知乎|CSDN的专栏里 文章目录 概要Create Island几何体生成部分随机种子Step 1Step 2Step 3Step 4Step 5Step 6 岛屿材质部分动态为草地设置颜色 程序设计的小技巧其它Platform Switch函数 概要 …

NLP的tokenization

GPT3.5的tokenization流程如上图所示,以下是chatGPT对BPE算法的解释: BPE(Byte Pair Encoding)编码算法是一种基于统计的无监督分词方法,用于将文本分解为子词单元。它的原理如下: 1. 初始化:将…

【Rust日报】2023-08-18 RustShip:一个新的 Rust 播客

探索 Rust 编译器基准测试套件 在最近关于 Rust 编译器 CI(持续集成)和基准测试基础设施的文章中,作者承诺写一篇关于运行时基准测试的博客文章,这是 Rust 编译器基准测试套件的新补充。然而,在这样做之前,…

5G技术与其对智能城市、物联网和虚拟现实领域的影响

随着第五代移动通信技术(5G)的到来,我们即将迈向一个全新的数字化世界。5G技术的引入将带来更高的速度、更低的延迟和更大的连接性,推动了智能城市、物联网和虚拟现实等领域的发展。 首先,5G技术将带来超越以往的网络速…

2023 最新 小丫软件库app开源源码 PHP后端

上传了源码解压之后,在admin/public/config.php修改后台登录账号和密码 后台地址:域名或者ip/admin 然后自己修改配置即可 后端搭建完成,现在导入iapp源码 导入iapp源码之后,修改mian.iyu载入事件的对接api和url就可以打包了 sss …

Apache Dubbo 云原生可观测性的探索与实践

作者:宋小生 - 平安壹钱包中间件资深工程师 Dubbo3 可观测能力速览 Apache Dubbo3 在云原生可观测性方面完成重磅升级,使用 Dubbo3 最新版本,你只需要引入 dubbo-spring-boot-observability-starter 依赖,微服务集群即原生具备以…