我能“C”——数据的存储

 目录

  

1. 数据类型介绍

1.1 类型的基本归类:

2. 整形在内存中的存储 

2.1 原码、反码、补码

2.2 大小端介绍

2.3 练习  

3. 浮点型在内存中的存储 

3.1 一个例子  

3.2 浮点数存储规则  


1. 数据类型介绍

char         // 字符数据类型
short       // 短整型
int         // 整形
long         // 长整型
long long   // 更长的整形
float       // 单精度浮点数
double       // 双精度浮点数
//C 语言有没有字符串类型?
类型的意义:
1. 使用这个类型开辟内存空间的大小(大小决定了使用范围)。
2. 如何看待内存空间的视角。

1.1 类型的基本归类:

整形家族:
char
        unsigned char  //只放正数
        signed char   //放正数和负数
//字符存储和表示的时候本质上使用的是ASCII值,ASCII值是整数,字符类型也归类到整型家族
平时我们用的int相当于是signed int,可以省略掉signed。
short
        unsigned short [ int ]
        signed short [ int ]
int
        unsigned int
        signed int
long
        unsigned long [ int ]
        signed long [ int ]

 浮点数家族:

float
double

构造类型(自定义类型):

> 数组类型
> 结构体类型 struct
> 枚举类型 enum
> 联合类型 union

 指针类型

int * pi ;
char * pc ;
float* pf ;
void* pv ;

空类型: 

void 表示空类型(无类型)
通常应用于函数的返回类型、函数的参数、指针类型。
void test(...)//函数不需要返回值
{}
void test(void)//函数不需要参数
{}
void* p;//无具体类型指针

2. 整形在内存中的存储 

我们之前讲过一个变量的创建是要在内存中开辟空间的。空间的大小是根据不同的类型而决定的。 那接下来我们谈谈数据在所开辟内存中到底是如何存储的? 

比如: 

int a = 20 ;
int b = - 10 ;
我们知道为 a 分配四个字节的空间。
那如何存储?
下来了解下面的概念:

2.1 原码、反码、补码

计算机中的整数有三种 2 进制表示方法,即原码、反码和补码。
三种表示方法均有 符号位 数值位 两部分,符号位都是用 0 表示 ,用 1 表示 ,而数值位
正数的原、反、补码都相同。
负整数的三种表示方法各不相同。
原码
直接将数值按照正负数的形式翻译成二进制就可以得到原码。
反码
将原码的符号位不变,其他位依次按位取反就可以得到反码。
补码
反码 +1 就得到补码。

对于整形来说:数据存放内存中其实存放的是补码。

为什么呢?

在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统 一处理; 同时,加法和减法也可以统一处理(CPU 只有加法器 )此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

我们看看在内存中的存储:

我们可以看到对于 a b 分别存储的是补码。但是我们发现顺序有点 不对劲
这是又为什么?这又涉及到了大小端,往下看~

2.2 大小端介绍

 什么大端小端:

大端(存储)模式,是指数据的低位保存在内存的高地址中,而数据的高位,保存在内存的低地址
中;
小端(存储)模式,是指数据的低位保存在内存的低地址中,而数据的高位 , ,保存在内存的高地
址中。

 

 

为什么有大端和小端:

为什么会有大小端模式之分呢?这是因为在计算机系统中,我们是以字节为单位的,每个地址单元都对应着一个字节,一个字节为8 bit 。但是在 C 语言中除了 8 bit char 之外,还有 16 bit short 型,32 bit long 型(要看具体的编译器),另外,对于位数大于 8 位的处理器,例如 16 位或者 32 位的处理器,由于寄存器宽度大于一个字节,那么必然存在着一个如何将多个字节安排的问题。因 此就导致了大端存储模式和小端存储模式。
例如:一个 16bit short x ,在内存中的地址为 0x0010 x 的值为 0x1122 ,那么 0x11 为高字节,0x22 为低字节。对于大端模式,就将 0x11 放在低地址中,即 0x0010 中, 0x22 放在高 地址中,即 0x0011 中。小端模式,刚好相反。我们常用的 X86 结构是小端模式,而 KEIL C51 则 为大端模式。很多的ARM DSP 都为小端模式。有些 ARM 处理器还可以由硬件来选择是大端模式还是小端模式。

 百度2015年系统工程师笔试题:

请简述大端字节序和小端字节序的概念,设计一个小程序来判断当前机器的字节序。( 10 分)
// 代码 1
#include <stdio.h>
int check_sys ()
{
int i = 1 ;
return ( * ( char * ) & i );
}
int main ()
{
int ret = check_sys ();
if ( ret == 1 )
{
printf ( " 小端 \n" );
}
else
{
printf ( " 大端 \n" );
}
return 0 ;
}
// 代码 2
int check_sys ()
{
union
{
int i ;
char c ;
} un ;
un . i = 1 ;
return un . c ;
}

2.3 练习  

1.
// 输出什么?
#include <stdio.h>
int main ()
{
    char a = - 1 ;
//10000000000000000000000000000001
//11111111111111111111111111111110
//11111111111111111111111111111111
//11111111 - 截断
//整型提升 - 按照符号位提升
//11111111111111111111111111111111
//11111111111111111111111111111110 - 减1
//10000000000000000000000000000001
    signed char b =- 1 ;
    unsigned char c =- 1 ;
//1000000000000000000000000000001
//11111111111111111111111111111110
//11111111111111111111111111111111
//11111111 - 如果是无符号数高位直接补0
//00000000000000000000000011111111换成十进制为255
//补完0后 最高位的符号位是0 所以原、反、补码相同
    printf ( "a=%d,b=%d,c=%d" , a , b , c );
    return 0 ;
}

结构为a = -1 b = -1 c = 255

 

 

 

下面程序输出什么?

2.
#include <stdio.h>
int main ()
{
    char a = - 128 ;
    printf ( "%u\n" , a );
    return 0 ;
}

//10000000000000000000000010000000 - 原码

//11111111111111111111111101111111 - 反码

//11111111111111111111111110000000 - 补码

//10000000 - a 截断

——>整型提升 补 1

//11111111111111111111111110000000

//%u打印 认为打印补码 对于无符号数来说 原反补相同

所以直接打印(转换成了十进制)打印了42亿多

3.
#include <stdio.h>
int main ()
{
    char a = 128 ;
    printf ( "%u\n" , a );
    return 0 ;
}

 和上一道一模一样 因为截断那里一样 都是补 1

4.
int i = - 20 ;
unsigned   int   j = 10 ;
printf ( "%d\n" , i + j );
// 按照补码的形式进行运算,最后格式化成为有符号整数
详解:
//10000000 00000000 00000000 00010100 负20的原码
//11111111  11111111  11111111 11101011 负20的反码(符号位不变,其他取反)
//11111111 11111111 11111111 11101100 负20的补码(反码加1得到补码)
//00000000 00000000 00000000 00001010 10的原码(正数的原,反,补码相同)
//11111111 11111111 11111111 11110110 -20和10的补码相加
//(计算机的结果,是存在内存中的,是补码)
//11111111 11111111 11111111 11110101 (减1)
//10000000 00000000 00000000 00001010 (取反)得到了-10
5.
unsigned int i ;
for ( i = 9 ; i >= 0 ; i -- )
{
    printf ( "%u\n" , i );
}

//-1的原 反 补
//10000000000000000000000000000001 原
//11111111111111111111111111111110 反
//11111111111111111111111111111111 补
//当循环i--到0,再减一次得到的是-1,而-1的补码是11111111111111111111111111111111,计算机会认为它是个很大的数,所以一直循环。

 %u打印无符号数

但是我换成%d,就可以打印-1了

6.
int main ()
{
    char a [ 1000 ];
    int i ;
    for ( i = 0 ; i < 1000 ; i ++ )
  {
        a [ i ] = - 1 - i ;
  }
    printf ( "%d" , strlen ( a ));
    return 0 ;
}
    //-1 -2 -3 -4...-127...-998 -999 -1000
    //char -1 -2 -3...-128 127 126...3 2 1...0 -1 -2...-128 127
//strlen 求字符串长度,找的是\0, \0的ASCII码值是0 所以算char的长度算到0会停止所以128+127=255
结果会打印225
char 类型的取值范围是 -128~127

7.
#include <stdio.h>
unsigned char i = 0 ;
//0~255
int main ()
{
    for ( i = 0 ; i <= 255 ; i ++ )
  {
        printf ( "hello world\n" );
//十进制的256转换成二进制为1 00000000取后面八位不就是变成0了吗,所以i<=255这个条件恒成立所以死循环
  }
    return 0 ;
}
所以结果为死循环打印hello world

3. 浮点型在内存中的存储 

常见的浮点数:

3.14159
1E10
浮点数家族包括: float double long double 类型。
浮点数表示的范围: float.h 中定义

3.1 一个例子  

浮点数存储的例子:
int main ()
{
int n = 9 ;
float * pFloat = ( float * ) & n ;
printf ( "n 的值为: %d\n" , n );
printf ( "*pFloat 的值为: %f\n" , * pFloat );
* pFloat = 9.0 ;
printf ( "num 的值为: %d\n" , n );
printf ( "*pFloat 的值为: %f\n" , * pFloat );
return 0 ;
}

n的值为:9——>是以整型的形式打印

*pFloat的值为:0.000000——>以浮点数的形式拿出来拿到的不是9.0,说明整型的存储形式和浮点数的存储形式有所差异

下面两个同理再次验证了整型的存储形式和浮点数的存储形式有所差异 。

输出的结果是什么呢?

3.2 浮点数存储规则  

num *pFloat 在内存中明明是同一个数,为什么浮点数和整数的解读结果会差别这么大?
要理解这个结果,一定要搞懂浮点数在计算机内部的表示方法。
详细解读:
根据国际标准 IEEE (电气和电子工程协会) 754 ,任意一个二进制浮点数 V 可以表示成下面的形式:
  • (-1)^S * M * 2^E
  • (-1)^S表示符号位,当S=0V为正数;当S=1V为负数。
  • M表示有效数字,大于等于1,小于2
  • 2^E表示指数位。
  • 举例:5.5 用二进制表示形式 —— >

如图原理 5.5 转换成 101.1   科学计数法1.011*2^2

 

举例来说:
十进制的 5.0 ,写成二进制是 101.0 ,相当于 1.01×2^2
那么,按照上面 V 的格式,可以得出 S=0 M=1.01 E=2
十进制的 -5.0 ,写成二进制是 - 101.0 ,相当于 - 1.01×2^2 。那么, S=1 M=1.01 E=2
IEEE 754 规定:
对于 32 位的浮点数,最高的 1 位是符号位 s ,接着的 8 位是指数 E ,剩下的 23 位为有效数字 M

对于64位的浮点数,最高的1位是符号位,接着的11位是指数E,剩下的23位为有效数字M。

IEEE 754 对有效数字 M 和指数 E ,还有一些特别规定。
前面说过, 1≤M<2 ,也就是说, M 可以写成 1.xxxxxx 的形式,其中 xxxxxx 表示小数部分。
IEEE 754 规定,在计算机内部保存 M 时,默认这个数的第一位总是 1 ,因此可以被舍去,只保存后面的xxxxxx部分。
比如保存 1.01 的时候,只保存01 ,等到读取的时候,再把第一位的 1 加上去。这样做的目的,是节省 1 位有效数字。以 32 位 浮点数为例,留给M 只有 23 位, 将第一位的1 舍去以后,等于可以保存 24 位有效数字。
至于指数 E ,情况就比较复杂。下
首先, E 为一个无符号整数( unsigned int
这意味着,如果 E 8 位,它的取值范围为 0~255 ;如果 E 11 位,它的取值范围为 0~2047 。但是,我们 知道,科学计数法中的E 是可以出现负数的,所以IEEE 754 规定,存入内存时 E 的真实值必须再加上一个中间数,对于 8 位的 E ,这个中间数 是127 ;对于 11 位的 E ,这个中间 数是1023 。比如, 2^10 E 10 ,所以保存成 32 位浮点数时,必须保存成 10+127=137 ,即 10001001。
然后,指数 E 从内存中取出还可以再分成三种情况:
E 不全为 0 或不全为 1
这时,浮点数就采用下面的规则表示,即指数 E 的计算值减去 127 (或 1023 ),得到真实值,再将
有效数字 M 前加上第一位的 1
比如:
0.5 1/2 )的二进制形式为 0.1 ,由于规定正数部分必须为 1 ,即将小数点右移 1 位,则为
1.0*2^(-1) ,其阶码为 -1+127=126 ,表示为
01111110 ,而尾数 1.0 去掉整数部分为 0 ,补齐 0 23 00000000000000000000000 ,则其二进
制表示形式为 :

 0 01111110 00000000000000000000000

E全为0

这时,浮点数的指数 E 等于 1-127 (或者 1-1023 )即为真实值,
有效数字 M 不再加上第一位的 1 ,而是还原为 0.xxxxxx 的小数。这样做是为了表示 ±0 ,以及接近于
0 的很小的数字。

 E全为1

这时,如果有效数字 M 全为 0 ,表示 ± 无穷大(正负取决于符号位 s );

好了,关于浮点数的表示规则,就说到这里。

解释前面的题目:

int main()
{
int n = 9;
float *pFloat = (float *)&n;
printf("n的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
*pFloat = 9.0;
printf("num的值为:%d\n",n);
printf("*pFloat的值为:%f\n",*pFloat);
return 0;
}

下面,让我们回到一开始的问题:为什么 0x00000009 还原成浮点数,就成了 0.000000
首先,将 0x00000009 拆分,得到第一位符号位 s=0 ,后面 8 位的指数 E=00000000
最后 23 位的有效数字 M=000 0000 0000 0000 0000 1001

9 -> 0000 0000 0000 0000 0000 0000 0000 1001  

由于指数E全为0,所以符合上一节的第二种情况。因此,浮点数V就写成:

  V=(-1)^0 × 0.00000000000000000001001×2^(-126)=1.001×2^(-146)  

显然,V是一个很小的接近于0的正数,所以用十进制小数表示就是0.000000 

再看例题的第二部分。

请问浮点数 9.0 ,如何用二进制表示?还原成十进制又是多少?
首先,浮点数 9.0 等于二进制的 1001.0 ,即 1.001×2^3
9.0 -> 1001.0 -> ( - 1 ) ^01 . 0012 ^3 -> s = 0 , M = 1.001 , E = 3 + 127 = 130
那么,第一位的符号位 s=0 ,有效数字 M 等于 001 后面再加 20 0 ,凑满 23 位,指数 E 等于 3+127=130
10000010
所以,写成二进制形式,应该是 s+E+M ,即
0 10000010 001 0000 0000 0000 0000 0000

这个32位的二进制数,还原成十进制,正是 1091567616  

THE END

        这是今日份关于数据存储的一些分享,希望可以帮助到大家!如果有什么不足的地方也请家人们给小叶一些好的建议,我会不断优化文章的!那就让我们一起加油吧!哈哈哈哈哈

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/81254.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Jmeter 分布式性能测试避坑指南

在做后端服务器性能测试中&#xff0c;我们会经常听到分布式。那你&#xff0c;是否了解分布式呢&#xff1f;今天&#xff0c;我们就来给大家讲讲&#xff0c;在企业实战中&#xff0c;如何使用分布式进行性能测试&#xff0c;实战过程中&#xff0c;又有哪些地方要特别注意&a…

Log4net在.Net Winform项目中的使用

引言&#xff1a; Log4net是一个流行的日志记录工具&#xff0c;可以帮助开发人员在应用程序中实现高效的日志记录。本文将提供一个详细的分步骤示例&#xff0c;来帮助您在.Net Winform项目中使用Log4net。 目录 一、安装Log4net二、配置Log4net三、在项目中使用Log4net四、初…

【Kubernetes】Kubernetes的Pod控制器

Pod控制器 一、Pod 控制器的概念1. Pod 控制器及其功用2. Pod 控制器有多种类型2.1 ReplicaSet2.2 Deployment2.3 DaemonSet2.4 StatefulSet2.5 Job2.6 Cronjob 3. Pod 与控制器之间的关系 二、Pod 控制器的使用1. Deployment2. SatefulSet2.1 为什么要有headless&#xff1f;2…

最新AI系统ChatGPT程序源码/支持GPT4/自定义训练知识库/GPT联网/支持ai绘画(Midjourney)+Dall-E2绘画/支持MJ以图生图

一、前言 SparkAi系统是基于国外很火的ChatGPT进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。 那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图文教程吧&#xff01…

Python编程——列表解析与常用操作

作者&#xff1a;Insist-- 个人主页&#xff1a;insist--个人主页 本文专栏&#xff1a;Python专栏 专栏介绍&#xff1a;本专栏为免费专栏&#xff0c;并且会持续更新python基础知识&#xff0c;欢迎各位订阅关注。 目录 一、列表是什么&#xff1f; 二、列表的特点 1、元素…

Java --- 二维数组

一、二维数组的定义 public class TwoArrayTest {public static void main(String[] args) {//二维数组声明与初始化//方式1&#xff1a;静态初始化int[][] arr new int[][]{{1,2,3},{1,2,3},{1,2,3}};//方式2&#xff1a;动态初始化int[][] arr2 new int[3][3];arr2[0][1] …

虚幻官方项目《CropOut》技术解析 之 程序化岛屿生成器(IslandGenerator)

开个新坑详细分析一下虚幻官方发布的《CropOut》&#xff0c;文章会同步发布到我在知乎|CSDN的专栏里 文章目录 概要Create Island几何体生成部分随机种子Step 1Step 2Step 3Step 4Step 5Step 6 岛屿材质部分动态为草地设置颜色 程序设计的小技巧其它Platform Switch函数 概要 …

NLP的tokenization

GPT3.5的tokenization流程如上图所示&#xff0c;以下是chatGPT对BPE算法的解释&#xff1a; BPE&#xff08;Byte Pair Encoding&#xff09;编码算法是一种基于统计的无监督分词方法&#xff0c;用于将文本分解为子词单元。它的原理如下&#xff1a; 1. 初始化&#xff1a;将…

【Rust日报】2023-08-18 RustShip:一个新的 Rust 播客

探索 Rust 编译器基准测试套件 在最近关于 Rust 编译器 CI&#xff08;持续集成&#xff09;和基准测试基础设施的文章中&#xff0c;作者承诺写一篇关于运行时基准测试的博客文章&#xff0c;这是 Rust 编译器基准测试套件的新补充。然而&#xff0c;在这样做之前&#xff0c;…

5G技术与其对智能城市、物联网和虚拟现实领域的影响

随着第五代移动通信技术&#xff08;5G&#xff09;的到来&#xff0c;我们即将迈向一个全新的数字化世界。5G技术的引入将带来更高的速度、更低的延迟和更大的连接性&#xff0c;推动了智能城市、物联网和虚拟现实等领域的发展。 首先&#xff0c;5G技术将带来超越以往的网络速…

2023 最新 小丫软件库app开源源码 PHP后端

上传了源码解压之后&#xff0c;在admin/public/config.php修改后台登录账号和密码 后台地址&#xff1a;域名或者ip/admin 然后自己修改配置即可 后端搭建完成&#xff0c;现在导入iapp源码 导入iapp源码之后&#xff0c;修改mian.iyu载入事件的对接api和url就可以打包了 sss …

Apache Dubbo 云原生可观测性的探索与实践

作者&#xff1a;宋小生 - 平安壹钱包中间件资深工程师 Dubbo3 可观测能力速览 Apache Dubbo3 在云原生可观测性方面完成重磅升级&#xff0c;使用 Dubbo3 最新版本&#xff0c;你只需要引入 dubbo-spring-boot-observability-starter 依赖&#xff0c;微服务集群即原生具备以…

docker的安装与基础使用

一.docker简介 1&#xff09;什么是docker Docker是一种用于构建、打包和运行应用程序的开源平台。它基于操作系统级虚拟化技术&#xff0c;可以将应用程序和其依赖的库、环境等资源打包到一个可移植的容器中&#xff0c;形成一个轻量级、独立的可执行单元。 开发者在本地编…

MATLAB打开excel读取写入操作例程

本文使用素材含代码测试用例等 MATLAB读写excel文件历程含&#xff0c;内含有测试代码资源-CSDN文库 打开文件 使用uigetfile函数过滤非xlsx文件&#xff0c;找到需要读取的文件&#xff0c;首先判断文件是否存在&#xff0c;如果文件不存在&#xff0c;程序直接返回&#x…

使用IText导出复杂pdf

1、问题描述 需要将发票导出成pdf&#xff0c;要求每页都必须包含发票信息和表头行。 2、解决方法 使用IText工具实现PDF导出 IText8文档&#xff1a;Examples (itextpdf.com) 3、我的代码 引入Itext依赖&#xff0c;我这里用的是8.0.1版本 <dependency><groupId>…

[线程/C]基础

文章目录 1. 线程介绍2. 创建线程2.1 线程函数2.2 创建线程 3. 线程退出4. 线程回收4.1 线程函数4.2 回收子线程数据4.2.1 使用子线程栈4.2.2 使用全局变量4.2.3 使用主线程栈 5. 线程分离6. 其他线程函数6.1 线程取消6.2 线程ID的比较 1. 线程介绍 线程是轻量级的进程&#x…

【HarmonyOS】【DevEco Studio】ohpm安装失败该如何解决?

【关键词】 HarmonyOS、DevEco Studio、ohpm安装失败 【问题背景及解决方案】 最近遇到很多DevEco Studio安装ohpm失败的问题&#xff0c;下面给大家介绍几种出现的问题以及解决方案&#xff1a; 1、ohpm not set up&#xff0c;报错截图如下&#xff1a; ​ 解决方案&…

T113-S3-TCA6424-gpio扩展芯片调试

目录 前言 一、TCA6424介绍 二、原理图连接 三、设备树配置 四、内核配置 五、gpio操作 总结 前言 TCA6424是一款常用的GPIO&#xff08;通用输入输出&#xff09;扩展芯片&#xff0c;可以扩展微控制器的IO口数量。在T113-S3平台上&#xff0c;使用TCA6424作为GPIO扩展芯…

Linux Mint 21.3 计划于 2023 年圣诞节发布

导读Linux Mint 项目近日公布了基于 Ubuntu 的 Linux Mint 发行版下一个重要版本的一些初步细节&#xff0c;以及备受期待的基于 Debian 的 LMDE 6&#xff08;Linux Mint Debian Edition&#xff09;版本。 近日&#xff0c;Linux Mint 项目负责人克莱门特-勒菲弗&#xff08;…

腾讯云GPU服务器GN7实例NVIDIA T4 GPU卡

腾讯云GPU服务器GN7实例搭载1颗 NVIDIA T4 GPU&#xff0c;8核32G配置&#xff0c;系统盘为100G 高性能云硬盘&#xff0c;自带5M公网带宽&#xff0c;系统镜像可选Linux和Windows&#xff0c;地域可选广州/上海/北京/新加坡/南京/重庆/成都/首尔/中国香港/德国/东京/曼谷/硅谷…