时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测

时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测

目录

    • 时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 学习总结
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

时序预测 | MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。
1.MATLAB实现WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测;
2.单变量时间序列预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鲸鱼算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

模型描述

鲸鱼算法(Whale Optimization Algorithm,WOA)是一种基于自然界中鲸鱼群体行为的优化算法,可以用于解决优化问题。而卷积长短期记忆神经网络(CNN-LSTM)是一种结合了卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的网络结构,能够处理序列数据和空间数据。多输入单输出回归预测是指输入多个特征,输出一个数值的回归问题。
下面是使用鲸鱼算法优化CNN-LSTM网络进行多输入单输出回归预测的步骤:
首先,需要确定网络的结构,包括卷积层、LSTM层、全连接层等。
然后,需要定义适应度函数,即网络在训练集上的预测误差。这里可以选择均方误根差(RMSE)作为适应度函数。
接下来,可以使用鲸鱼算法进行参数优化。具体来说,可以将CNN-LSTM网络的参数作为优化变量,将适应度函数作为目标函数,使用鲸鱼算法进行迭代优化,直到目标函数收敛或达到预设的迭代次数。
在优化过程中,需要设置好鲸鱼算法的参数,包括优化正则化率、学习率、隐藏层单元数等。
最后,可以使用优化后的CNN-LSTM网络进行多输入单输出回归预测。
需要注意的是,鲸鱼算法虽然可以用于优化神经网络,但并不是万能的,也存在局限性。在使用鲸鱼算法进行优化时,需要根据具体问题进行调参和优化,以获得更好的优化效果。

程序设计

  • 完整源码和数据获取方式1:私信博主回复WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测,同等价值程序兑换;
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):WOA-CNN-LSTM鲸鱼算法优化卷积长短期记忆神经网络时间序列预测,专栏外只能获取该程序。
%%  获取最优种群
   for j = 1 : SearchAgents
       if(fitness_new(j) < GBestF)
          GBestF = fitness_new(j);
          GBestX = X_new(j, :);
       end
   end
   
%%  更新种群和适应度值
   pop_new = X_new;
   fitness = fitness_new;

%%  更新种群 
   [fitness, index] = sort(fitness);
   for j = 1 : SearchAgents
      pop_new(j, :) = pop_new(index(j), :);
   end

%%  得到优化曲线
   curve(i) = GBestF;
   avcurve(i) = sum(curve) / length(curve);
end

%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);

%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam
    'MaxEpochs', 20, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', InitialLearnRate, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', L2Regularization, ...         % 正则化参数
    'ExecutionEnvironment', 'gpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'SequenceLength',1,...
    'MiniBatchSize',10,...
    'Plots', 'training-progress');                    % 画出曲线

学习总结

该算法的流程如下:
数据预处理。将输入数据进行预处理,如将牌型数据转化为数字、进行归一化、缺失值填充等操作。卷积网络。对输入数据进行卷积神经网络(CNN)处理,提取其特征表示。LSTM网络。将卷积网络提取的特征序列输入长短期记忆神经网络(LSTM),将其转化为单一输出。输出LSTM网络的预测结果。
在该算法中,卷积网络用于提取输入数据的特征,LSTM网络将卷积网络提取的特征序列转化为单一输出,并保留其时间序列信息,从而能够更好地预测未来的结果。该算法的优化方法主要集中在卷积网络和LSTM网络两个阶段:卷积网络优化。可以通过增加卷积网络的深度和宽度,增加其表达能力,提高对输入序列的特征提取能力。同时,可以采用更好的激活函数和正则化方法,如ReLU和Dropout,以增加网络的非线性能力和泛化能力。
LSTM网络优化。可以通过增加LSTM网络的隐藏层大小和层数,增加其表达能力和记忆能力,提高对输入序列的建模能力。同时,可以采用更好的门控机制和梯度裁剪方法,如LSTM和Clip Gradient,以增加网络的稳定性和泛化能力。
总之,通过卷积神经网络和长短期记忆神经网络的结合,可以对多输入单输出的回归预测任务进行建模和预测。其优化方法主要包括调整模型结构、优化损失函数和优化算法、融合多个数据源、增加数据预处理和增强、调整模型超参数等。通过这些优化方法,可以提高模型的预测性能和泛化能力,适应更广泛的应用场景。

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/81149.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VBA技术资料MF45:VBA_在Excel中自定义行高

【分享成果&#xff0c;随喜正能量】可以不光芒万丈&#xff0c;但不要停止发光。有的人陷入困境&#xff0c;不是被人所困&#xff0c;而是自己束缚自己&#xff0c;这时"解铃还须系铃人"&#xff0c;如果自己无法放下&#xff0c;如何能脱困&#xff1f; 。 我给V…

03_缓存双写一致性

03——缓存双写一致性 一、缓存双写一致性 如果redis中有数据&#xff0c;需要和数据库中的值相同如果redis中无数据&#xff0c;数据库中的值要是最新值&#xff0c;且准备回写redis 缓存按照操作来分&#xff0c;可以分为两种&#xff1a; 只读缓存 读写缓存 同步直写操作…

解决:(error) ERR unknown command shutdow,with args beginning with

目录 一、遇到问题 二、出现问题的原因 三、解决办法 一、遇到问题 要解决连接redis闪退的问题&#xff0c;按照许多的方式去进行都没有成功&#xff0c;在尝试使用了以下的命名去尝试时候&#xff0c;发现了这个问题。 二、出现问题的原因 这是一个粗心大意导致的错误&am…

Azure静态网站托管

什么是静态网站托管 Azure Blob的静态网站托管是一项功能&#xff0c;它允许开发人员在Azure Blob存储中托管和发布静态网站。通过这个功能&#xff0c;您可以轻松地将静态网页、图像、视频和其他网站资源存储在Azure Blob中&#xff0c;并直接通过提供的URL访问这些资源。 官…

什么是变量提升(hoisting)?它在JavaScript中是如何工作的?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 变量提升&#xff08;Hoisting&#xff09;⭐ 变量提升的示例&#xff1a;⭐ 写在最后 ⭐ 专栏简介 前端入门之旅&#xff1a;探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅&…

Android 场景Scene的使用

Scene 翻译过来是场景&#xff0c;开发者提供起始布局和结束布局&#xff0c;就可以实现布局之间的过渡动画。 具体可参考 使用过渡为布局变化添加动画效果 大白话&#xff0c;在 Activity 的各个页面之间切换&#xff0c;会带有过渡动画。 打个比方&#xff0c;使用起来类似…

回归预测 | MATLAB实现IPSO-SVM改进粒子群优化算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现IPSO-SVM改进粒子群优化算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现IPSO-SVM改进粒子群优化算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xf…

保险龙头科技进化论:太保的六年

如果从2013年中国首家互联网保险公司——众安在线的成立算起&#xff0c;保险科技在我国的发展已走进第十个年头。十年以来&#xff0c;在政策指引、技术发展和金融机构数字化转型的大背景下&#xff0c;科技赋能保险业高质量发展转型已成为行业共识。 大数据、云计算、人工智…

unity 之Transform组件(汇总)

文章目录 理论指导结合例子 理论指导 当在Unity中处理3D场景中的游戏对象时&#xff0c;Transform 组件是至关重要的组件之一。它管理了游戏对象的位置、旋转和缩放&#xff0c;并提供了许多方法来操纵和操作这些属性。以下是关于Transform 组件的详细介绍&#xff1a; 位置&a…

初步认识OSI/TCP/IP一(第三十八课)

1 初始OSI模型 OSI参考模型(Open Systems Interconnection Reference Model)是一个由国际标准化组织(ISO)和国际电报电话咨询委员会(CCITT)联合制定的网络通信协议规范,它将网络通信分为七个不同的层次,每个层次负责不同的功能和任务。 2 网络功能 数据通信、资源共…

网络安全---webshell实践

一、首先环境配置 1.上传文件并解压 2.进入目录下 为了方便解释&#xff0c;我们只用两个节点&#xff0c;启动之后&#xff0c;大家可以看到有 3 个容器&#xff08;可想像成有 3 台服务器就成&#xff09;。 二、使用蚁剑去连接 因为两台节点都在相同的位置存在 ant.jsp&…

ansible(1)-- 部署ansible连接被控端

目录 一、部署ansible 1.1 安装 1.2 测试连接 192.168.136.55 ansible 192.168.136.56被控端 一、部署ansible 1.1 安装 zabbix-s只是主机名&#xff0c;不用在意&#xff0c;更好该主机也安装了zabbix&#xff0c;不好更改。 下载阿里云epel源 #安装阿里云的epel源&#…

算法之排序总结

排序算法 最近&#xff0c;一直在学习业务上的知识&#xff0c;对基础没有怎么重视&#xff0c;因此&#xff0c;这篇文章想对于排序算法进行一个大致的总结&#x1f913;&#x1f913;&#x1f913;。 首先来说一下&#xff0c;关于排序一些相关的基础知识。 排序概述 原地…

操作系统的体系结构、内核、虚拟机

&#x1f40c;个人主页&#xff1a; &#x1f40c; 叶落闲庭 &#x1f4a8;我的专栏&#xff1a;&#x1f4a8; c语言 数据结构 javaweb 石可破也&#xff0c;而不可夺坚&#xff1b;丹可磨也&#xff0c;而不可夺赤。 操作系统结构 一、操作系统体系结构1.1操作系统的内核1.1.…

GO学习之 数据库(mysql)

GO系列 1、GO学习之Hello World 2、GO学习之入门语法 3、GO学习之切片操作 4、GO学习之 Map 操作 5、GO学习之 结构体 操作 6、GO学习之 通道(Channel) 7、GO学习之 多线程(goroutine) 8、GO学习之 函数(Function) 9、GO学习之 接口(Interface) 10、GO学习之 网络通信(Net/Htt…

VS2019生成的DLL,给QT(MinGW版本)使用的小结

VS2019端&#xff1a; a 基于生成一个DLL的工程&#xff08;要注意生成是x86&#xff0c;还是x64的&#xff0c;需要和后面的QT的App工程对应&#xff09;&#xff0c;这里不多解释了&#xff0c;网上多的是&#xff1b; b 在cpp实现文件里&#xff0c;假如要导出一个这样的…

React Native文本添加下划线

import { StyleSheet } from react-nativeconst styles StyleSheet.create({mExchangeCopyText: {fontWeight: bold, color: #1677ff, textDecorationLine: underline} })export default styles

kafka-- kafka集群 架构模型职责分派讲解

一、 kafka集群 架构模型职责分派讲解 生产者将消息发送到相应的Topic&#xff0c;而消费者通过从Topic拉取消息来消费 Kafka奇数个节点消费者consumer会将消息拉去过来生产者producer会将消息发送出去数据管理 放在zookeeper

actuator/prometheus使用pushgateway上传jvm监控数据

场景 准备 prometheus已经部署pushgateway服务&#xff0c;访问{pushgateway.server:9091}可以看到面板 实现 基于springboot引入支持组件&#xff0c;版本可以 <!--监控检查--><dependency><groupId>org.springframework.boot</groupId><artifa…

java Spring Boot yml多环境拆分文件管理优化

上文 java Spring Boot yml多环境配置 我们讲了多环境开发 但这种东西都放在一起 还是非常容易暴露信息的 并且对维护来讲 也不是非常的友好 这里 我们在resources下创建三个文件 分别叫 application-pro.yml application-dev.yml application-test.yml 我们直接将三个环境 转…