操作系统的体系结构、内核、虚拟机


在这里插入图片描述

🐌个人主页: 🐌 叶落闲庭
💨我的专栏:💨
c语言
数据结构
javaweb

石可破也,而不可夺坚;丹可磨也,而不可夺赤。


操作系统结构

  • 一、操作系统体系结构
    • 1.1操作系统的内核
      • 1.1.1大内核(又名:宏内核/单内核)
      • 1.1.2微内核
    • 1.3分层结构
    • 1.4模块化
    • 1.5外核(exokernel)
  • 二、操作系统引导
    • 2.1什么是操作系统引导?
    • 2.2操作系统引导过程
  • 三、虚拟机

一、操作系统体系结构

1.1操作系统的内核

  • 内核是操作系统最基本、最核心的部分
  • 实现操作系统内核功能的那些程序就是内核程序
  • 与硬件关系较紧密的模块:
    • 时钟管理:实现计时功能
    • 中断处理:负责实现中断机制
    • 原语:
      • 是一种特殊的程序
      • 处于操作系统最底层,是最接近硬件的部分
      • 这种程序的运行具有原子性 – – 其运行只能一气呵成,不可中断
      • 运行时间较短、调用频繁
  • 对资源系统进行管理的功能:
    • 进程管理
    • 存储器管理
    • 设备管理
  • 注意:这些管理工作更多的是对数据结构的操作,不会直接涉及硬件

在这里插入图片描述


  • 注意:
    • 操作系统内核需要运行在内核态
    • 操作系统非内核功能运行在用户态

1.1.1大内核(又名:宏内核/单内核)

  • 将操作系统的主要功能模块都作为系统内核,运行在核心态
  • 优点:高性能
  • 缺点:
    • 1.内核代码庞大,结构混乱,难以维护
    • 2.大内核中某个功能模块出错,就可能导致整个系统崩溃
  • 典型的大内核/宏内核/单内核 操作系统:Linux、UNIX
  • 特征、思想:
    • 所有系统功能都放在内核里(大内核结构的OS通常也采用了“模块化”的设计思想)

在这里插入图片描述


1.1.2微内核

  • 只把最基本的功能保留在内核
  • 优点:
    • 1.内核功能少,结构清晰,方便维护,内核可靠性高
    • 2.内核外的某个功能模块出错不会导致整个系统崩溃
  • 缺点:
    • 1.需要频繁地在核心态和用户态之间切换,性能低
    • 2.用户态下的各功能模块不可以直接相互调用,只能通过内核的“消息传递”来间接通信
  • 典型的微内核操作系统:Windows NT

在这里插入图片描述


1.3分层结构

  • 特征、思想:内核分多层,每层可单向调用更低一层提供的接口
  • 优点:
    • 1.便于调试和验证、自底向上逐层调试验证
    • 2.易扩充和易维护,各层之间调用接口清晰固定
  • 缺点:
    • 1.仅可调用相邻低层,难以合理定义各层的边界
    • 2.效率低,不可跨层调用,系统调用执行时间长

在这里插入图片描述


1.4模块化

模块化是将操作系统按功能划分为若干个具有一定独立性的模块,每个模块具有某方面的管理功能,并规定好各模块间的接口,使各模块之间能通过接口进行通信,还可以进一步将各模块细分为若干个具有一定功能的子模块,同样也规定好各子模块之间的接口,把这种设计方法称为模块–接口法。

  • 特征、思想:将内核分为多个模块,各模块之间相互协作
  • 内核=主模块+可加载内核模块
  • 主模块:只负责核心功能,如进程调度、内存管理
  • 可加载内核模块:可以动态加载新模块到内核,而无需重新编译整个内核
  • 优点:
    • 1.模块间逻辑清晰易于维护,确定模块间接口后即可多模块同时开发
    • 2.支持动态加载新的内核模块(如:安装设备驱动程序、安装新的文件系统模块到内核),增强OS适应性
    • 3.任何模块都可以直接调用其他模块,无需采用详细传递进行通信,效率高
  • 缺点:
    • 1.模块间的接口定义未必合理
    • 2.模块间相互依赖,更难调试和验证

1.5外核(exokernel)

  • 特征、思想:内核负责进程调度、进程通信等功能,外核负责为用户进程分配未经抽象的硬件资源,且由外核负责保证资源使用安全
  • 优点:
    • 1.外核可直接给用户进程分配“不虚拟、不抽象”的硬件资源,使用户进程可以更灵活的使用硬件资源
    • 2.减少了虚拟硬件资源的“映射层”,提升效率
  • 缺点:
    • 1.降低了系统的一致性
    • 2.是系统变得更复杂

在这里插入图片描述
**

二、操作系统引导

2.1什么是操作系统引导?

操作系统引导:开机的时候,怎么让操作系统运行起来

安装操作系统后:
在这里插入图片描述

  • 磁盘包括:
    • 主引导记录(MBR)(包含:磁盘引导程序和分区表)
    • C:盘
    • D:盘
    • E:盘等
    • C:盘中又包含:
      • 引导记录PBR(负责找到“启动管理器”)
      • 根目录
      • 其他
  • 主存:
    • 由ROM(BIOS)包含:ROM引导程序,即自举程序和RAM组成

2.2操作系统引导过程


在这里插入图片描述


  • 1.CPU从一个特定的主存地址开始,取指令,执行ROM中的引导程序(先进行硬件自检,再开机)
  • 2.将磁盘的第一块 – – 主引导记录读入内存,执行磁盘引导程序,扫描分区表
  • 3.从活动区(又称主分区,即安装了操作系统的分区)读入分区引导记录,执行其中的程序
  • 4.从根目录下找到完整的操作系统初始化程序(启动管理器)并执行,完成“开机”的一系列动作

三、虚拟机

  • 虚拟机:使用虚拟化技术,将一台物理机器虚拟化为多台虚拟机器(Virtual Machien ,VM),每个虚拟机器都可以独立运行一个操作系统
  • 同义术语:虚拟机管理程序/虚拟机监控程序/Virtual Machien Monitor(VMM)/Hypervisor

在这里插入图片描述


在这里插入图片描述


  • 两类虚拟机管理程序(VMM)的对比
第一类VMM第二类VMM
对物理资源的控制权直接运行在硬件之上,能直接控制和分配物理资源运行在Host OS之上,依赖于Host OS为其分配的物理资源
资源分配方式在安装Guest OS时,VMM要在原本的硬盘上自行分配存储空间,类似于“外核”的分配方式,分配未经抽象的物理硬件Guest OS拥有自己的细腻==虚拟硬盘,该硬盘实际上是Guest OS文件系统中的一个大文件,Guest OS分配到的内存是虚拟内存
性能性能更好性能更差,需要Guest OS作为“中介”
可支持的虚拟机数量更多,不需要和Guest OS竞争资源,相同的硬件资源可以支持更多的虚拟机更少,Guest OS本身需要使用物理资源,Guest OS上运行的其他进程也需要物理资源
虚拟机的可迁移性更差更好,只需导出虚拟机镜像文件即可迁移到另一台Guest OS上,商业化应用更广泛
运行模式第一类VMM运行在最高特权级(Ring O),可以执行最该特权的指令第二类VMM部分运行在用户态、部分运行在内核态,Guest OS发出的系统调用会被VMM截获,并转化为VMM对Guest OS的系统调用

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/81128.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

GO学习之 数据库(mysql)

GO系列 1、GO学习之Hello World 2、GO学习之入门语法 3、GO学习之切片操作 4、GO学习之 Map 操作 5、GO学习之 结构体 操作 6、GO学习之 通道(Channel) 7、GO学习之 多线程(goroutine) 8、GO学习之 函数(Function) 9、GO学习之 接口(Interface) 10、GO学习之 网络通信(Net/Htt…

VS2019生成的DLL,给QT(MinGW版本)使用的小结

VS2019端: a 基于生成一个DLL的工程(要注意生成是x86,还是x64的,需要和后面的QT的App工程对应),这里不多解释了,网上多的是; b 在cpp实现文件里,假如要导出一个这样的…

React Native文本添加下划线

import { StyleSheet } from react-nativeconst styles StyleSheet.create({mExchangeCopyText: {fontWeight: bold, color: #1677ff, textDecorationLine: underline} })export default styles

kafka-- kafka集群 架构模型职责分派讲解

一、 kafka集群 架构模型职责分派讲解 生产者将消息发送到相应的Topic,而消费者通过从Topic拉取消息来消费 Kafka奇数个节点消费者consumer会将消息拉去过来生产者producer会将消息发送出去数据管理 放在zookeeper

actuator/prometheus使用pushgateway上传jvm监控数据

场景 准备 prometheus已经部署pushgateway服务&#xff0c;访问{pushgateway.server:9091}可以看到面板 实现 基于springboot引入支持组件&#xff0c;版本可以 <!--监控检查--><dependency><groupId>org.springframework.boot</groupId><artifa…

java Spring Boot yml多环境拆分文件管理优化

上文 java Spring Boot yml多环境配置 我们讲了多环境开发 但这种东西都放在一起 还是非常容易暴露信息的 并且对维护来讲 也不是非常的友好 这里 我们在resources下创建三个文件 分别叫 application-pro.yml application-dev.yml application-test.yml 我们直接将三个环境 转…

Seaborn数据可视化(一)

目录 1.seaborn简介 2.Seaborn绘图风格设置 21.参数说明&#xff1a; 2.2 示例&#xff1a; 1.seaborn简介 Seaborn是一个用于数据可视化的Python库&#xff0c;它是建立在Matplotlib之上的高级绘图库。Seaborn的目标是使绘图任务变得简单&#xff0c;同时产生美观且具有信…

图像处理常见的两种拉流方式

传统算法或者深度学习在进行图像处理之前&#xff0c;总是会首先进行图像的采集&#xff0c;也就是所谓的拉流。解决拉流的方式有两种&#xff0c;一个是直接使用opencv进行取流&#xff0c;另一个是使用ffmpeg进行取流&#xff0c;如下分别介绍这两种方式进行拉流处理。 1、o…

mybatis入门的环境搭建及快速完成CRUD(增删改查)

又是爱代码的一天 一、MyBatis的介绍 ( 1 ) 背景 MyBatis 的背景可以追溯到 2002 年&#xff0c;当时 Clinton Begin 开发了一个名为 iBATIS 的持久化框架。iBATIS 的目标是简化 JDBC 编程&#xff0c;提供一种更直观、易用的方式来处理数据库操作。 在传统的 JDBC 编程中&…

DevOps系列文章之 GitlabCICD自动化部署SpringBoot项目

一、概述 本文主要记录如何通过Gitlab CI/CD自动部署SpringBoot项目jar包。 二、前期准备 准备三台 CentOS7服务器&#xff0c;分别部署以下服务&#xff1a; 序号系统IP服务1CentOS7192.168.56.10Gitlab2CentOS7192.168.56.11Runner &#xff08;安装Docker&#xff09;3Cen…

对前端PWA应用的部分理解和基础Demo

一、什么是PWA应用&#xff1f; 1、PWA简介 ​ 渐进式Web应用&#xff08;Progressive Web App&#xff09;&#xff0c;简称PWA&#xff0c;是 Google 在 2015 年提出的一种使用web平台技术构建的应用程序&#xff0c;官方认为其核心在于Reliable&#xff08;可靠的&#xf…

华为ENSP网络设备配置实战4(OSPF+BGP+VPN+单臂路由)

题目要求 1、loopback口通过OSPF连通&#xff0c;合理规划OSPF开销&#xff0c;通过设置AR1->AR2->AR4链路&#xff0c;来消除负载链路。 2、AR3、AR4分别与AR1、AR2建立BGP邻居 3、AR3、AR4作为PC机网关设备 4、PC1、PC3由VPN-spi承载&#xff0c;PC2、PC4由VPN-spims承…

物联网智慧安防实训综合实训基地建设方案

一、系统概述 物联网智慧安防实训综合实训基地是一个为学生提供综合实践、培养技能的场所&#xff0c;专注于物联网技术与智慧安防应用的培训和实训。通过物联网智慧安防实训综合实训基地的建设和运营&#xff0c;学生可以在真实的环境中进行实践训练&#xff0c;提高其物联网技…

【高频面试题】 消息中间件

文章目录 1、RabbitMQ1.1 RabbitMQ-如何保证消息不丢失1.2 RabbitMQ消息的重复消费问题如何解决的1.3 RabbitMQ中死信交换机 ? (RabbitMQ延迟队列有了解过嘛)1.4 RabbitMQ如果有100万消息堆积在MQ , 如何解决(消息堆积怎么解决)1.5 RabbitMQ的高可用机制有了解过嘛 2、Kafka2.…

LlamaGPT -基于Llama 2的自托管类chatgpt聊天机器人

LlamaGPT一个自托管、离线、类似 ChatGPT 的聊天机器人&#xff0c;由 Llama 2 提供支持。100% 私密&#xff0c;不会有任何数据离开你的设备。 推荐&#xff1a;用 NSDT编辑器 快速搭建可编程3D场景 1、如何安装LlamaGPT LlamaGPT可以安装在任何x86或arm64系统上。 首先确保…

【微服务】一文了解 Nacos

一文了解 Nacos Nacos 在阿里巴巴起源于 2008 2008 2008 年五彩石项目&#xff08;完成微服务拆分和业务中台建设&#xff09;&#xff0c;成长于十年双十一的洪峰考验&#xff0c;沉淀了简单易用、稳定可靠、性能卓越的核心竞争力。 随着云计算兴起&#xff0c; 2018 2018 20…

C++11并发与多线程笔记(3)线程传参详解,detach()大坑,成员函数做线程函数

C11并发与多线程笔记&#xff08;3&#xff09;线程传参详解&#xff0c;detach 大坑&#xff0c;成员函数做线程函数 1、传递临时对象作为线程参数1.1 要避免的陷阱11.2 要避免的陷阱21.3 总结 2、临时对象作为线程参数2.1 线程id概念2.2 临时对象构造时机抓捕 3、传递类对象…

vscode 安装勾选项解释

1、通过code 打开“操作添加到windows资源管理器文件上下文菜单 &#xff1a;把这个两个勾选上&#xff0c;可以对文件使用鼠标右键&#xff0c;选择VSCode 打开。 2、将code注册为受支持的文件类型的编辑器&#xff1a;不建议勾选&#xff0c;这样会默认使用VSCode打开支持的相…

虫情测报灯

在农业生产过程中&#xff0c;农作物的虫害问题永远都是放在首位的。随着现代生活科技的发展和社会进步&#xff0c;人们对物质也有了新的要求。伴随农作物品种的增加&#xff0c;农药和化肥的使用也在导致农业虫害问题日益加剧&#xff0c;在这种不良的耕作状态下&#xff0c;…

总结 TCP 协议的相关特性

TCP协议段格式: 如图, 端口号: 是其中一个重要的部分,知道端口号才能确认数据交给哪个应用程序(端口号属于传输层的概念). 4位首部长度:4bit表示的范围是0->15,在此处,单位是"4字节",因此,将这里的数值 * 4&#xff0c;才是真正的报头长度,即TCP 报头最大长度,60…