领航Linux UDP:构建高效网络新纪元

欢迎来到 破晓的历程的 博客

⛺️不负时光,不负己✈️

文章目录

    • 引言
    • Udp和Tcp的异同
      • 相同点
      • 不同点
      • 总结
    • 1.1、socket
    • 1.2、bind
    • 1.3、recvfrom
    • 1.4、sendto
    • 2.1、代码
    • 2.1、说明
    • 3.1、代码
    • 3.2、说明

引言

在前几篇博客中,我们学习了Linux网络编程中的一些概念。从本篇博客开始,我们就正式开始写代码。本篇博客我们将写udp服务器和客户端代码,并实现服务器和客户端通信。这些代码学习成本较高,建议大家多敲几遍。如任何问题,欢迎与我沟通。

Udp和Tcp的异同

UDP协议(User Datagram Protocol,用户数据报协议)和TCP协议(Transmission Control Protocol,传输控制协议)是计算机网络中两种常用的传输层协议,它们在多个方面存在显著的异同。以下是对两者异同点的详细比较:

相同点

  • 层次位置:两者都位于OSI模型的第四层——传输层,为上层应用提供数据传输服务。
  • 作用:都在网络通信中扮演着重要的角色,用于在网络中的不同设备之间传输数据。

不同点

UDP协议TCP协议
可靠性不提供可靠性保证,不保证数据包的顺序、完整性和不重复。提供可靠的数据传输,通过序列号、确认机制和重传机制确保数据的完整性和有序性。
连接性无连接协议,发送数据前不需要建立连接,直接发送数据。面向连接的协议,数据传输前需要建立连接,通过“三次握手”机制确认连接状态。
传输效率传输效率高,因为不需要建立连接和维持连接状态,开销小。传输效率相对较低,因为需要建立和维护连接,增加了额外的开销。
实时性实时性较好,适用于对实时性要求较高的应用,如在线游戏、视频通话等。实时性较差,因为需要等待连接建立和确认,以及处理重传等机制。
数据包大小数据包大小没有限制,但通常受限于网络MTU(最大传输单元)。将数据分割成较小的数据块进行传输,以适应不同的网络环境。
拥塞控制不使用拥塞控制,网络拥塞时不会降低发送速率。使用拥塞控制机制,根据网络状况调整发送速率,避免网络拥塞。
应用场景适用于对可靠性要求不高,但对实时性要求较高的场景,如流媒体传输、DNS查询等。适用于对可靠性要求较高的场景,如文件传输、网页浏览等。

总结

UDP协议和TCP协议在可靠性、连接性、传输效率、实时性、数据包大小和拥塞控制等方面存在显著的差异。选择哪种协议取决于具体的应用场景和需求。如果对数据传输的可靠性要求较高,应选择TCP协议;如果对实时性要求较高,且可以容忍一定的数据丢失,则可以选择UDP协议。在实际应用中,两种协议经常结合使用,以满足不同的网络需求。

不难发现,Udp代码较简单,写起来相对的简单一些,上手较容易。所以我们写使用Udp协议进行通信。

为了使大家更加容易理解。我们按照创建udp服务端的整个过程的先后顺序来进行讲解。最后写出完整的代码。

1.1、socket

网络通信必须要申请套接字。申请套接字对应的函数为socket。

       #include <sys/types.h>          /* See NOTES */
       #include <sys/socket.h>
       int socket(int domain, int type, int protocol);

参数
①domain
在这里插入图片描述
domain(协议域/协议族):决定了socket的地址类型。常用的协议族有AF_INET(IPv4)、AF_INET6(IPv6)、AF_LOCAL(或称AF_UNIX,Unix域socket)、AF_ROUTE等。在通信中,必须采用与协议族对应的地址。例如,AF_INET决定了要使用IPv4地址(32位)与端口号(16位)的组合。

②type

在这里插入图片描述
type(socket类型):指定了socket的类型。常用的socket类型有SOCK_STREAM(流式套接字,用于TCP)、SOCK_DGRAM(数据报套接字,用于UDP)、SOCK_RAW(原始套接字,允许对底层协议如IP或ICMP进行直接访问)等。
③protocol
protocol(协议):通常情况下,可以将其设置为0,让系统自动选择type类型对应的默认协议。
返回值

  • 当socket函数成功创建了一个套接字时,它返回一个有效的套接字描述符(socket descriptor)。这个描述符是一个非负整数,用于后续的网络操作,如绑定、监听、连接、发送和接收数据等。
  • 如果在创建套接字时发生错误,socket函数返回-1,并设置全局变量errno以指示错误原因。此时,可以调用errno变量或perror()函数来获取具体的错误信息。常见的错误码包括EACCES(权限不足)、EADDRINUSE(地址已经被占用)、EAFNOSUPPORT(地址族不支持)、EINVAL(参数无效)、EMFILE(达到进程允许打开的最大文件数目)、ENFILE(系统打开文件数目过多)、ENOBUFS/ENOMEM(内存不足)、EPROTONOSUPPORT(协议不支持)等。

1.2、bind

bind函数在网络编程中扮演着至关重要的角色,它主要用于将一个本地协议地址(包括IP地址和端口号)赋予一个套接字。以下是关于bind函数的详细解释:

       #include <sys/types.h>          /* See NOTES */
       #include <sys/socket.h>
       int bind(int sockfd, const struct sockaddr *addr,
                socklen_t addrlen);

参数
①sockfd:这是由socket()函数返回的文件描述符,代表已经创建的套接字。
②addr:这是一个指向特定协议地址结构的指针,如struct sockaddr_in或struct sockaddr_un,它包含了地址、端口和可能的IP地址信息。
③addrlen:这是地址结构的长度,通常以字节为单位。对于IPv4,通常使用sizeof(struct sockaddr_in);对于IPv6,使用sizeof(struct sockaddr_in6);对于Unix域套接字,使用sizeof(struct sockaddr_un)。
返回值:

  • 如果bind函数成功执行,它返回0。
  • 如果出现错误,返回-1,并设置全局变量errno以指示错误原因。常见的错误包括EACCES(权限不足)、EADDRINUSE(地址已经被使用)、EADDRNOTAVAIL(地址不可用)、EAFNOSUPPORT(地址族不支持该套接字类型)、EINVAL(套接字未打开)、ENOTSOCK(文件描述符不是套接字)等。

使用场景:

在TCP服务器程序中,bind函数通常用于指定服务器应监听的端口号。服务器在启动时捆绑其众所周知的端口,以便客户端可以连接到它。
对于UDP套接字,bind函数同样用于指定接收数据的端口号。
在Unix域套接字中,bind函数可以用来指定套接字在文件系统中的路径名。

注意事项:

  • 在调用bind函数之前,套接字必须处于未连接状态(对于面向连接的套接字如TCP)。
  • 如果addr参数中的地址或端口号为0,系统将为套接字自动选择一个可用的地址或端口号。
  • 在多线程环境中,应确保对bind函数的调用是线程安全的,避免竞态条件。
  • 绑定的本质:将用户态的sockaddr_in设置进内核变为系统态。
  • 对于端口号而言,如果用户没有调用bind函数进行显式绑定,那么系统在第一次发送消息时,会随机给套接字绑定一个端口号。

1.3、recvfrom

recvfrom函数是一个在POSIX兼容操作系统(如Linux)中用于接收数据的系统调用。它主要用于从指定的套接字接收数据,并适用于面向无连接的协议,如UDP(用户数据报协议)。

       #include <sys/types.h>
       #include <sys/socket.h>
       ssize_t recvfrom(int sockfd, void *buf, size_t len, int flags,
       struct sockaddr *src_addr, socklen_t *addrlen);

参数
①sockfd:已经创建并绑定的套接字的文件描述符。
②buf:创建好的一块缓冲区的地址。用来承接从网络中读取到的数据。
③len:该块缓冲区的大小。
④flags:读取数据的方式。默认设为0——阻塞式读取。
⑤src_addr输出型参数,该结构体里面包含着数据发送方的信息,如port、ip等等。如果不需要这些信息,可以设为null。
⑥‘’addrlen:该结构体的大小。

返回值

  • 成功时,返回接收到的字符数(字节数)。
  • 如果没有可用数据或者连接已经关闭,返回0。
  • 如果出现错误,返回-1,并设置errno错误号。此时可以通过perror()函数来打印出错误信息。

注意事项

  • 在调用recvfrom函数之前,需要先使用bind函数将socket绑定到一个地址上。
  • 如果套接字是非阻塞的,recvfrom函数可能会在没有接收到任何数据时返回-1,并设置errno为EAGAIN或EWOULDBLOCK。
  • 如果接收到的数据比缓冲区还大,那么只会取缓冲区大小的数据,并将剩余的数据丢弃。

1.4、sendto

sendto函数是一个系统调用,用于将数据从指定的套接字发送到目标地址。它通常用于UDP(用户数据报协议)通信,因为UDP是无连接的,所以sendto函数允许你向一个特定的地址发送数据报,而不需要事先建立连接。

#include <sys/socket.h>
ssize_t sendto(int sockfd, const void *buf, size_t len, int flags,
               const struct sockaddr *dest_addr, socklen_t addrlen);

参数

  • sockfd:已经创建好的socket文件描述符。
  • buf:指向要发送的数据的缓冲区。
  • len:要发送的数据长度。
  • flags:发送选项标志,可以是0或者像MSG_DONTWAIT这样的选项。MSG_DONTWAIT表示非阻塞发送,如果发送缓冲区满,则不等待直接返回。
  • dest_addr:目标地址的sockaddr结构体指针。对于IPv4,这通常是一个指向struct sockaddr_in的指针;对于IPv6,则是一个指向struct sockaddr_in6的指针。
  • addrlen:目标地址结构体的长度,例如sizeof(struct sockaddr_in)或sizeof(struct sockaddr_in6)。

返回值:

sendto函数的返回值是一个long类型的整数,表示发送的字节数。具体返回值有以下几种可能:

  • 如果返回值大于0,则表示数据已经成功发送到了目标地址。返回值代表实际发送的字节数。
  • 如果返回值等于0,表示发送的数据长度为0。这可能是因为buf指向的空间长度为0,或者在使用UDP协议时,sendto函数成功地发送了0字节的数据。
  • 如果返回值等于-1,表示发送过程中出现了错误。此时,可以通过检查errno的值来确定具体的错误原因。例如,如果errno为EINTR,表示sendto函数被一个信号中断了;如果errno为EAGAIN或EWOULDBLOCK,表示发送缓冲区已满,无法立即发送数据(这通常发生在使用了MSG_DONTWAIT标志的情况下)。

需要注意的是,sendto函数不保证数据的可靠传输。也就是说,发送的数据可能会丢失,或者接收方可能无法按照发送的顺序接收数据。如果需要可靠的数据传输,应该使用TCP协议而不是UDP。
此外,在使用sendto函数之前,需要确保已经通过socket函数创建了一个套接字,并且(对于面向连接的套接字类型)已经通过connect函数与目标地址建立了连接(尽管对于UDP,连接通常不是必需的,但也可以通过connect建立默认的目标地址)。同时,也需要确保目标地址是有效的,并且发送的数据缓冲区是正确设置的。

udp服务端

2.1、代码

#pragma once

#include <iostream>
#include <string>
#include <strings.h>
#include <cerrno>
#include <cstring>
#include <cstdlib>
#include <functional>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>

namespace Server
{
    using namespace std;

    static const string defaultIp = "0.0.0.0"; //TODO
    static const int gnum = 1024;

    enum {USAGE_ERR = 1, SOCKET_ERR, BIND_ERR};

    typedef function<void (string,uint16_t,string)> func_t;

    class udpServer
    {
    public:
        udpServer(const func_t &cb, const uint16_t &port, const string &ip = defaultIp)
        :_callback(cb), _port(port), _ip(ip), _sockfd(-1)
        {}
        void initServer()
        {
            // 1. 创建socket
            _sockfd = socket(AF_INET, SOCK_DGRAM, 0);
            if(_sockfd == -1)
            {
                cerr << "socket error: " << errno << " : " << strerror(errno) << endl;
                exit(SOCKET_ERR);
            }
            cout << "socket success: " << " : " << _sockfd << endl;

            // 2. 绑定port,ip(TODO)
            // 未来服务器要明确的port,不能随意改变
            struct sockaddr_in local; // 定义了一个变量,栈,用户
            bzero(&local, sizeof(local));
            local.sin_family = AF_INET;
            local.sin_port = htons(_port); // 你如果要给别人发消息,你的port和ip要不要发送给对方
            local.sin_addr.s_addr = inet_addr(_ip.c_str());   // 1. string->uint32_t 2. htonl(); -> inet_addr
            //local.sin_addr.s_addr = htonl(INADDR_ANY); // 任意地址bind,服务器的真实写法
            int n = bind(_sockfd, (struct sockaddr*)&local, sizeof(local));
            if(n == -1)
            {
                cerr << "bind error: " << errno << " : " << strerror(errno) << endl;
                exit(BIND_ERR);
            }
            // UDP Server 的预备工作完成
        }
        void start()
        {
            // 服务器的本质其实就是一个死循环
            char buffer[gnum];
            for(;;)
            {
                // 读取数据
                struct sockaddr_in peer;
                socklen_t len = sizeof(peer); //必填
                ssize_t s = recvfrom(_sockfd, buffer, sizeof(buffer) - 1, 0, (struct sockaddr*)&peer, &len);
                // 1. 数据是什么 2. 谁发的?
                if(s > 0)
                {
                    buffer[s] = 0;
                    string clientip = inet_ntoa(peer.sin_addr); //1. 网络序列 2. int->点分十进制IP
                    uint16_t clientport = ntohs(peer.sin_port);
                    string message = buffer;

                    cout << clientip <<"[" << clientport << "]# " << message << endl;
                    // 我们只把数据读上来就完了吗?对数据做处理
                    _callback(clientip, clientport, message);
                }
            }
        }
        ~udpServer()
        {
        }
    private:
        uint16_t _port;
        string _ip; // 实际上,一款网络服务器,不建议指明一个IP
        int _sockfd;
        func_t _callback; //回调
    };
}

2.1、说明

  • 服务器一旦开始运行,就不会停止。所以服务器本质就是一个死循环。这种一直运行的进程叫做常驻进程。
  • 一般来说,服务器不会显式的绑定某一个ip。因为一个主机可能会有不同的ip。但是这台主机内的端口号是唯一的,客户端都是发送信息到特定的端口号上。所以服务器为了可以接收到所有发到这台主机上的信息(不会存在数据丢弃的情况),选择绑定0.0.0.0作为自己的ip。这样就可以接受到任何发送到这台主机指定端口的所有信息。

udp客户端

3.1、代码

#include <iostream>
#include <string>
#include <strings.h>
#include <cerrno>
#include <cstring>
#include <cstdlib>
#include <unistd.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <arpa/inet.h>
#include <netinet/in.h>
#include <pthread.h>

namespace Client
{
    using namespace std;

    class udpClient
    {
    public:
        udpClient(const string &serverip, const uint16_t &serverport)
            : _serverip(serverip), _serverport(serverport), _sockfd(-1), _quit(false)
        {
        }
        void initClient()
        {
            // 创建socket
            _sockfd = socket(AF_INET, SOCK_DGRAM, 0);
            if (_sockfd == -1)
            {
                cerr << "socket error: " << errno << " : " << strerror(errno) << endl;
                exit(2);
            }
            cout << "socket success: "
                 << " : " << _sockfd << endl;

            // 2. client要不要bind[必须要的],client要不要显示的bind,需不需程序员自己bind?不需要!!!
            // 写服务器的是一家公司,写client是无数家公司 -- 由OS自动形成端口进行bind!-- OS在什么时候,如何bind
        }

        static void *readMessage(void *args)
        {
            int sockfd = *(static_cast<int *>(args));
            pthread_detach(pthread_self());
            while (true)
            {
                char buffer[1024];
                struct sockaddr_in temp;
                socklen_t temp_len = sizeof(temp);
                size_t n = recvfrom(sockfd, buffer, sizeof(buffer) - 1, 0, (struct sockaddr *)&temp, &temp_len);
                if (n >= 0)
                    buffer[n] = 0;
                cout << buffer << endl;
            }

            return nullptr;
        }

        void run()
        {
            pthread_create(&_reader, nullptr, readMessage, (void *)&_sockfd);

            struct sockaddr_in server;
            memset(&server, 0, sizeof(server));
            server.sin_family = AF_INET;
            server.sin_addr.s_addr = inet_addr(_serverip.c_str());
            server.sin_port = htons(_serverport);

            string message;
            char cmdline[1024];
            while (!_quit)
            {
                //cerr << "# "; // ls -a -l
                // cin >> message;
                fprintf(stderr, "Enter# ");
                fflush(stderr);
                fgets(cmdline, sizeof(cmdline), stdin);
                cmdline[strlen(cmdline)-1] = 0;
                message = cmdline;
                sendto(_sockfd, message.c_str(), message.size(), 0, (struct sockaddr *)&server, sizeof(server));
            }
        }
        ~udpClient()
        {
        }

    private:
        int _sockfd;
        string _serverip;
        uint16_t _serverport;
        bool _quit;

        pthread_t _reader;
    };
} // namespace Client

3.2、说明

客户端需要绑定端口号吗?客户端需要显式的绑定端口号吗?

端口号是需要绑定端口号的,但是不需要显式的绑定端口号的。绑定端口号的工作交给操作系统自主完成,这个工作由操作系统在客户端初次发送消息时完成。

相对于服务端来说,客户端必须绑定特定的端口号,但是端口号的数值对于客户端来说就显得不太重要。

服务端必须指定特定的端口号以供客户端根据该端口号来向服务端发送消息。但是客户端而言,如果显式指明端口号,必然会出现两个客户端竞争一个端口号的情况。所以在通信时就由操作系统随机分配一个端口号供客户端进行通信。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/801610.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【Django】网上蛋糕项目商城-购物车和我的订单功能

1.购物车功能 在首页中的滚动栏的商品&#xff0c;热门商品&#xff0c;新品&#xff0c;以及商品详情中都有加入购物车按钮 在models文件中创建购物车表&#xff0c;用于保存当前用户添加的商品信息 # 购物车表 class ShoppingCar(models.Model):# 用户iduserIdmodels.Integ…

JRT打印设计器解耦

为了让打印设计器可以给多个产品打印通用&#xff0c;那么设计器就不能嵌入太多具体产品的业务信息。比如医院主键、工作组、医嘱关联登。 设计器在设计表的时候就没引入检验部分的依赖&#xff0c;采用产品组唯一标识和产品组业务ID来隔离不同组的模板设计。 维护菜单时候就…

CTFshow--web--xss

目录 web316 web317~319 web320~326 web327 web328 web329 web330 web331 web332 web333 先在自己的服务器写上代码 <?php$content $_GET[1]; if(isset($content)){file_put_contents(flag.txt,$content); }else{echo no data input; }要拿到管理员的cookie , 而…

Java - 程序员面试笔记记录 实现 - Part5

7.1 Struts 优点&#xff1a; 1. MVC模式实现了表现与逻辑的分离&#xff0c;扩展性高。 2. 提供页面导航功能&#xff0c;通过配置文件建立整个系统各部分之间的联系。 3. 集成了一些常用处理功能。 缺点&#xff1a; 1. 仅面向 Web 应用程序开发 2. Action 非线程安全…

HTML+CSS+JS井字棋(来自动下棋)

井字棋 自动下棋 玩家先下&#xff0c;计算机后下 源码在图片后面 点赞❤️收藏⭐️关注&#x1f60d; 效果图 源代码 <!DOCTYPE html> <html lang"en"> <head> <meta charset"UTF-8"> <title>Tic Tac Toe Game</tit…

开始Linux之路

人生得一知己足矣&#xff0c;斯世当以同怀视之。——鲁迅 Linux操作系统简单操作指令 1、ls指令2、pwd命令3、cd指令4、mkdir指令(重要)5、whoami命令6、创建一个普通用户7、重新认识指令8、which指令9、alias命令10、touch指令11、rmdir指令 及 rm指令(重要)12、man指令(重要…

技术周总结 2024.07.08~07.14(算法,Python,Java,Scala,PHP)

文章目录 一、07.13 周六1.0&#xff09;算法题&#xff1a;字符串中的单词反转1.1&#xff09; 问题01:可靠性计算中的MTTR MTTF MTBF 分别指什么&#xff1f;他们之间有什么联系&#xff1f;MTTR (Mean Time to Repair)MTTF (Mean Time to Failure)MTBF (Mean Time Between F…

韦东山嵌入式linux系列-驱动进化之路:总线设备驱动模型-课后作业

在内核源码中搜索 platform_device_register 可以得到很多驱动&#xff0c;选择 一个作为例子&#xff1a; ① 确定它的名字 ② 根据它的名字找到对应的 platform_driver ③ 进入 platform_device_register/platform_driver_register 内部&#xff0c;分析 dev 和 drv 的匹配过…

某林操作系统——网络系统

什么是零拷贝&#xff1f; DMA技术&#xff1a;使用一个DMA控制器将数据从硬盘传输到内存&#xff0c;除了一开始调用DMA控制器发起传输&#xff0c;数据搬运全称不需要CPU参与。 发送一段数据到网上如下所示 4次状态切换4次拷贝。 为了加快速度就要减少上下文切换&#xff…

网络安全防御【防火墙安全策略用户认证综合实验】

目录 一、实验拓扑图 二、实验要求 三、实验思路 四、实验步骤 1、打开ensp防火墙的web服务&#xff08;带内管理的工作模式&#xff09; 2、在FW1的web网页中网络相关配置 3、交换机LSW6&#xff08;总公司&#xff09;的相关配置&#xff1a; 4、路由器相关接口配置&a…

【深度学习入门篇 ⑦】PyTorch池化层

【&#x1f34a;易编橙&#xff1a;一个帮助编程小伙伴少走弯路的终身成长社群&#x1f34a;】 大家好&#xff0c;我是小森( &#xfe61;ˆoˆ&#xfe61; ) &#xff01; 易编橙终身成长社群创始团队嘉宾&#xff0c;橙似锦计划领衔成员、阿里云专家博主、腾讯云内容共创官…

鸿蒙开发:Universal Keystore Kit(密钥管理服务)【查询密钥是否存在(ArkTS)】

查询密钥是否存在(ArkTS) HUKS提供了接口供应用查询指定密钥是否存在。 开发步骤 指定密钥别名keyAlias&#xff0c;密钥别名最大长度为64字节。初始化密钥属性集。用于查询时指定密钥的属性TAG&#xff0c;比如查询的密钥范围(全量/单个)&#xff0c;当查询单个时&#xff…

工时计算软件比较:哪些功能是必需的?

国内外主流的10款工时计算软件对比&#xff1a;PingCode、Worktile、蓝凌OA、用友软件、金蝶软件、智能人事、Time Doctor、Toggl Track、Clockify、Harvest。 在选择合适的工时计算软件时&#xff0c;很多企业面临的一个主要痛点是如何找到既能满足功能需求又具有成本效益的解…

虚拟机及其Debian(kali)安装

本机电脑为Windows10系统专业版&#xff0c;在此基础上安装VMware和系统&#xff08;Kali&#xff09; 步骤如下 一、安装 VMware Workstation Pro v16.2.4 安装步骤可参照网上博客&#xff0c;该步骤较简单&#xff0c;此处不做讲解。文件中共计两个&#xff0c;其中一个是激活…

YOLOv8白皮书-第Y8周:yolov8.yaml文件解读

本文为365天深度学习训练营中的学习记录博客 原作者&#xff1a;K同学啊|接辅导、项目定制 请根据YOLOv8n、YOLOv8s模型的结构输出&#xff0c;手写出YOLOv8l的模型输出 文件位置&#xff1a;./ultralytics/cfg/models/v8/yolov8.yaml 一、参数配置 # Parameters nc: 80 # n…

android APP在蓝牙模拟键盘扫描条码设备开机时闪退

&#x1f3c6;本文收录于《CSDN问答解答》专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&…

下载安装VSCode并添加插件作为仓颉编程入门编辑器

VSCode下载地址&#xff1a;下载 Visual Studio Code - Mac、Linux、Windows 插件下载&#xff1a;GitCode - 全球开发者的开源社区,开源代码托管平台 仓颉社区中下载解压 cangjie.vsix 插件 打开VSCode 按 Ctrl Shift X 弹出下图 按照上图步骤依次点击选中我们下…

【Unity2D 2022:UI】制作主菜单

一、创建主菜单游戏场景 1. 在Scenes文件夹中新建一个游戏场景Main Menu 2. 为场景添加背景 &#xff08;1&#xff09;创建画布Canvas &#xff08;2&#xff09;在Canvas中创建新的空游戏物体Main Menu &#xff08;3&#xff09;在Main Menu中新建一个图像游戏物体Backgrou…

c++基础(1)

c语言是结构化和模块化的语言&#xff0c;用于处理规模较小的程序。当问题需要高度抽象和建模时&#xff0c;c语言不适合。c是基于c语言产生的&#xff0c;既可以进行c语言过程化程序设计&#xff0c;又可以以抽象数据类型为特点的基于对象的程序设计&#xff0c;还可以进行面向…

pico+unity手柄和摄像机控制初级设置

1、摄像头配置 摄像头模式、floor是追踪原点类型&#xff08;将根据设备检测到地面的高度来计算追踪原点&#xff09;&#xff0c; Device 模式时&#xff0c;为通常理解的 Eye 模式&#xff0c;不会将根据设备检测到地面的高度来计算追踪原点 选择floor时&#xff0c;修改相…