AI写作不懂提示词 大象Prompt 保姆级系列教程三

一、提示词的核心价值究竟是啥?

最近跟不少业内朋友探讨这事儿,我觉得:提示词的核心价值在于对方法论的封装以及由此带来的知识传播速度加快。

通俗讲,假如你熟悉的行业里有个厉害的“老师傅”,他在核心业务上有好多心得、经验和方法,有的能量化或结构化,有的只可意会。优秀的提示词工程师能通过研究和访谈老师傅,把这些方法提炼出来做成 Prompt,这就能用很低的成本把珍贵方法复制给好多人。特别是,有些人可能要多年训练才能接近老师傅的水平,但注意,客观说,提示词提炼方法论,主要是把老师傅 100 分的方法,变成能做到 60 分成果的水平,让原本只能做 0 - 30 分的人快速提升能力。

那原本能做到 60 分的人呢?他们其实能靠自己已经入门的业务理解加上 AI,把从 60 分提到 80 分的时间缩短好几倍。

至于 80 分到 100 分,我个人觉得目前的 AI 很难做到,更多得靠个人自己学习提升,或者口传身教。当然这个过程中 AI 能做不少辅助工作,或者说,分数越高,个人能力的放大效果越明显。 以上这些想法仔细琢磨下,你会发现,这决定了你对 AI 的学习心态和预期管理。

比如说:

我有个朋友看书特快,不仅快,还能迅速记住、总结、提炼书里对他有用的内容,变成自己的知识。像很多人只会说,某某书里提到过,“这是书里的原文”。他却能根据读过的书,用自己的话和知识体系重新整理出一个清晰的观点,真让人羡慕。

要是我想把他这种让人羡慕的方法提炼成一条 Prompt,我得像这样访谈:

  1. 不同类型的书是不是阅读和记忆方法不一样?咋分类,有没有共性的方法能说说?
  2. 阅读和记忆有没有不同的思维模式或者小窍门,能列出来参考不?
  3. 读书好像得有种自驱力,咋优先选自己肯定能读下去的书?咋通过目录大纲确定一本书的核心?
  4. 一本书你会读几遍?有没有啥顺序讲究?
  5. 你读书时会做笔记吗?还是读完后回忆着做大纲? 要是教你刚大学毕业的孩子有效读书,咋能快速教会他?

等上面这些问题都有清楚、明确的答案了,就能设计一个 Prompt 了

要是想让 AI 帮你,像“樊登读书”或者“得到”那样给你讲书,你得弄个叫“书籍阅读助手”的 Prompt,把通用的读书方法都放到 Prompt 里,再根据不同类型的书测试,不断优化改进。

要是想让 AI 在“选书”和“督促我读书”这环节起作用,就得弄个叫“催我读书”的 Prompt,重点研究咋选出适合用户的书,咋实现 Prompt 的激励效果和让自己读完有收获(比如生成读书笔记)。

要是更看重读完书后的知识内化部分,就得重点研究读书的效率和信息转化问题,这里更重要的是结构化信息能力和有效的记忆存储与调用。

我举这个例子是想让看这文章的你明白啥叫“方法论提炼”,在这个例子里,要是这个 Prompt 做好了还有效,价值很明显:

它可能能让根本读不进去书的人读完一两本。(0 分到 30 分的进步)

它可能能让一年只能读几本的人阅读量翻倍,还能有效运用书里的知识。(30 分到 50 分的进步)

它可能能让一年读 100 本书的人,随便做出好多 Prompt,还能用 Prompt 自动写更多 Prompt

二、写提示词必须用结构化框架吗?

最近确实看到好多朋友发了大量结构化的提示词。在我看来,结构化提示词有明显优点:

  • 层次清楚,对用户和大模型来说,可读性都更好点
  • 结构扩展性强,能随时按自己 Prompt 的需求扩展特定结构模块
  • 格式和语义一致,方便迭代、调试和维护

但结构化更重要的是它的思维链:

Role(角色)-> Profile(角色简介)—> Profile 下的 skill(角色技能) -> Rules(角色要遵守的规则) -> Workflow(满足 -> 进行正式开始工作的初始化准备 -> 开始实际使用

在这个认知前提下,首先得清楚每个模块存在的意义,如果不需要增加新模块,就别加,别看到别人框架里有新模块名就硬往自己模板里加,为这硬凑语句。要知道结构化框架提出的最大意义在于提升 Prompt 性能,核心是清晰、简明、有效、统一。

我见过只有角色 + 技能 + 限制条件这三个模块但运行特别稳定,生成内容准确的 Prompt。

我也见过同时具备:角色 + 简介 + 背景 + 目标 + 技能 + 限制条件 + 工作流程 + 定义 + 输出格式 + 示例 + 建议 + 初始化

然后运行效果和前面那个只有三个模块差不多的 Prompt……

“我们是为了有效输出而结构化,不是为了结构化而结构化。”

关于是否一定要用结构化提示词,我在很多地方都说过我的看法,这里再讲一遍:

  • 结构化有利于稳定有效内容的输出(理性框架)。
  • 非结构化适合对连续对话掌控能力强的表达者和创意工作者(感性创意)。 写作没有固定方法,各取所需

解释一下: 要是你需要一个能重复使用、不挑使用者 Prompt 能力、一次性输入能稳定生成 60 分以上结果的 Prompt,结构化或许是你提炼方法论的好工具,而且方便传播。

要是你本身逻辑思维和书面表达能力强,跟大模型连续对话时每次都能准确问出有用的几句话,得到想要的回答,而且不担心 3 小时 50 次的问答次数,更愿意深入追问,那你不用写一大段固定格式的结构化 Prompt,按你喜欢的灵活方式随时提问就行,这甚至可能更有助于激发灵感之类的创意。

最后,结构化不是套格式的八股文,它只是一种思维框架变成的写作框架,是一种语法结构,把它当成作文本上的格子,而不是作文本身。

三、新手写提示词的常见误区

不重视基础知识

好多同学着急写复杂的提示词,基础教程随便扫几眼就觉得行了,结果在能照着模板写好几千 token 的提示词之后,却问出特别基础的问题:

  • 为啥我跟 GPT 聊两轮它就失忆啦?
  • 为啥我给它特定一段话,它好像把这跟别的内容弄混了?
  • 为啥大模型没法指定准确字数,有啥办法能让它生成的长度靠谱点?

我知道基础教程可能枯燥,之前很多还是生硬的英文翻译,读着确实让人烦,不过现在有不少翻译和解读很好的教程,建议收藏起来,多读一读,再跟着示例做些符合自己需求的小例子。

想用一个 Prompt 解决一堆问题

很多同学因为看到某个结构严谨、设计精妙的提示词而入坑,觉得特别厉害,然后就暗下决心:自己也要写出这样的!

这挺好,但是新手容易走进一个误区,就是不了解 Prompt 的能力上限,想在一个 Prompt 里靠复杂的结构和逻辑实现好多并行目标,结果 Prompt 变得很长、结构很复杂、逻辑不清楚,最后整体性能和稳定性都变得很差,会出现很多看着很复杂、很牛,但输入之后,发现生成的内容多但大多是没用的废话,要么初始设置的限制性语句或者流程语句经常被忽略等等。

对于这点,我的建议是,先从一个清晰、具体的小目标开始,先把一个目标实现得稳稳当当,再考虑逐个增加其他附加目标,但别主次不分,加到感觉影响输出的稳定性或准确性就别加了。其他需求用其他 Prompt 来实现,别盲目夸大 Prompt 的能力,它本身有很多局限性,硬要跨越这些局限性只会起反作用。

写 Prompt 却脱离使用环境

要是你发现自己花在飞书代码块和 markdown 记事本上的时间,远远超过跟 GPT 对话的时间,那你得警惕一下:是不是太关注 Prompt 的文本本身,而忽略了在写作过程中本来可以跟 GPT 深度对话,来检验它对你方法论的熟悉程度,或者让它针对某个逻辑给出好建议,或者在 Prompt 版本迭代中反复测试生成结果,来优化和改进 Prompt 。

在昨天的实战案例里,我看到学员们写了一个焦虑情绪测试和生成建议的 Prompt ,它的结构、语句还有各模块的作用没啥大毛病,生成结果除了太宽泛也没啥大问题。但实际让焦虑患者用这套 Prompt 的时候,会出现很多体验和情绪上的问题,这在一定程度上说明,如果太纠结 Prompt 的文法而忽略了它作为对话工具的预设,没在对话场景里代入用户体验反复测试,很可能写出的 Prompt 让围观的人觉得不错,但真正的用户根本不会用。

四、提示词是过渡产品吗?它的存在形态和价值会巨变吗?

“提示词是过渡产品”这个观点的出现背景是:在大模型的助力下,人与机器的交互正经历着一种范式转变——从机器指令(像编程语言之类的)到更接近人的方式(比如识别语音、动作,理解人的语言)来交流。因为技术发展需要时间,现在还不太成熟,大模型对人的语言理解还有不少问题,所以在目前这个范式转变刚开始的时候,人得去适应机器、适应大模型的能力,去学习用提示词技术,让大模型表现更好。—— 江树

它的潜在意思是,未来可能你随口说一句“我累了”,AI 就能明白你累的原因,明白你说这话背后是想交流、倾诉、单纯感叹,还是想让它帮忙做事。在这种情况下,作为用户确实不用输入任何复杂的提示词,能完全随意地表达。

但这可能只是提示词出现的场景变了,就像这次线下大会好几个同学问这个问题,我的回答是,提示词不会是短期的需求和技能,只是用户是不是一定得学会,这不好说,以后可能提示词会包含在产品里,由产品里内置的提示词判断用户意图,再结合调取的关于用户此刻输入内容的相关信息(像用户近期的情况、工作压力、布置的任务、面临的困难、饮食习惯、通讯记录、感情状况,甚至生理周期)来决定怎么处理信息,给用户生成需要的内容,也就是说,现在可能人人都得学提示词,下个阶段可能只有专业的提示词工程师需要学,而且要深入学,普通用户直接享受傻瓜式的对话服务就行。

而上面说的这种情况,从目前的发展来看,可能还需要很长时间。说到时间跨度,咱们可以想想类似的对比:“马车是汽车的过渡产品吗?” “民航飞机是航天飞行器的过渡产品吗?”咱们会发现,“过渡产品”这个词,如果放到足够长的时间尺度看,啥东西都能算过渡产品,但如果过渡周期比你的生命周期还长,那这个所谓的过渡对你来说就不算过渡了。

短期内,随着大模型性能增强,提示词的上限也会提高,比如要是 GPT5 出来了,我们之前不提倡的“许愿式”的 Prompt 写法也许就能行得通了,比如你跟 GPT 说,请你生成对人性有足够洞察力的观点(这话现在基本没用,它做不到),到下个阶段,它也许会反问你,你希望我对人性的哪方面有洞察力?我先给你生成个句子你看看我理解得对不对?或者再夸张点,它结合你的上下文真能明白这个问题,并且生成你想要的结果。

在这种情况下,提示词编写者能更随意地编写提示词,实现更复杂的逻辑,更复杂的人 - AI 交互,更多模态的输入和输出。那么提示词编写者的能力上限会提高,总体来看,编写者的能力差距也会进一步拉大。

五、是否要付费学习提示词?咋选课?

这问题最近被问得挺多,主要取决于三个方面。 你的学习目的 要是你学提示词有很具体的小目标,像优化 AI 写作、提升职场效率这类的,而且你对提示词的运用需求不太高,我不建议你买那种很贵的、深度学习的提示词课程。可以考虑学学针对你目标的 AI 课,比如 AI 写作、AI 编程、AI 办公效率优化这些,提示词在里面算一部分,把它当工具理解和掌握就行。

要是你学提示词是为了赚钱,那先想想自己的能力和资源优势,能不能找到赚钱的途径,比如个人定制提示词、封装提示词工具,给特定场景的企业客户批量定制提示词来赋能,给某一类你特别熟悉的人群做特定工具等等。要是你确实有清楚的计划,就差关键一步,那你可以深度学习提示词。除了掌握具体写法、做实践练习,还能认识很多也要当提示词工程师的同学和老师,说不定对你未来赚钱的业务有帮助,视野也能开阔不少。

你的自学能力

要是你自学能力特别强,自己看文档、论文没问题,能通过阅读学习掌握方法技巧,看别人发的提示词作品就能模仿出符合自己需求的,而且觉得够用了,那我不建议你花钱再学,因为凭你自己的能力,只要花够时间,就能学得不错,就是可能慢点。但我建议你多跟提示词编写者联系交流,互相分享,别自己一个人闷头学。

alt

要是没上面说的那种能力,很想学提示词而且学习目的明确,那还是选个靠谱的课程系统学习比较好。因为提示词编写这事儿门槛不高,上限却很高,更新还快。有系统的组织学习,加上有效的实践途径,学习效果跟你自己学完全不一样。省钱、省脑子、省时间,总得选一个。

“ 学习=信息输入 - 验证认同 - 内化吸收 - 自主输出 ”

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/800752.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

XXL-Job:分布式任务调度平台的深入解析

个人名片 🎓作者简介:java领域优质创作者 🌐个人主页:码农阿豪 📞工作室:新空间代码工作室(提供各种软件服务) 💌个人邮箱:[2435024119qq.com] &#x1f4f1…

买卖股票-vector

121. 买卖股票的最佳时机 - 力扣&#xff08;LeetCode&#xff09; 当天对比当天的&#xff0c;如果符合条件就换&#xff1b; class Solution { public:int maxProfit(vector<int>& prices) {int inf 1e9;int minp inf, maxprofit 0;int n prices.size();for(i…

Docker的数据管理和网络通信

目录 一、Docker 的数据管理 1&#xff0e;数据卷 2&#xff0e;数据卷容器 二、端口映射 三、容器互联&#xff08;使用centos镜像&#xff09; 四、*Docker 镜像的创建 1&#xff0e;基于现有镜像创建 2&#xff0e;基于本地模板创建 3&#xff0e;基于Dockerfile 创…

【postgresql】角色(Role)

PostgreSQL 中&#xff0c;角色&#xff08;Role&#xff09;是一个重要的概念&#xff0c;用于管理数据库的访问权限和用户身份。角色可以被视为用户或组&#xff0c;具体取决于它们的配置方。 角色属性 角色可以具有多种属性&#xff1a; LOGIN&#xff1a;允许角色登录数据…

一个引发openssl崩溃问题案例

1 背景 最近用libevent写了一个https代理功能&#xff0c;在调研的时候&#xff0c;遇到了一个项目用到了本地多个openssl库引发的ssl握手崩溃问题。 2 开发环境 项目库版本号依赖项libeventlibevent-2.1.8-stableopenssl 1.1openssl1.0u / 1.1.1w / 3.3.1...... 3 问题现象…

电脑分区如何合并?简单易行的操作方法!

随着科技的不断发展&#xff0c;电脑已经成为我们日常生活中不可或缺的工具。在使用电脑的过程中&#xff0c;我们有时会对硬盘进行分区&#xff0c;以便更好地管理数据和提高运行效率。然而&#xff0c;随着时间的推移&#xff0c;我们可能会发现分区过多导致管理复杂&#xf…

【数据结构】高效解决连通性问题的并查集详解及Python实现

文章目录 1. 并查集&#xff1a;一种高效的数据结构2. 并查集的基本操作与优化2.1 初始化2.2 查找操作与路径压缩2.3 合并操作与按秩合并 3. 并查集的应用3.1 判断连通性3.2 计算连通分量 4. 并查集的实际案例4.1 图的连通性问题4.2 网络连接问题 5. 并查集的优缺点5.1 优点5.2…

如何使用ECharts和DataV.GeoAtlas创建广东省人口分布图

引言 数据可视化是数据分析中的重要环节&#xff0c;它可以帮助我们直观地理解数据。ECharts 是一个由百度团队开发的开源数据可视化库&#xff0c;它提供了丰富的图表类型和灵活的配置选项。DataV.GeoAtlas 是阿里云提供的一个地理数据可视化平台&#xff0c;它可以帮助我们获…

记录|.NET上位机开发和PLC通信的实现

本文记录源自&#xff1a;B站视频 实验结果&#xff1a;跟视频做下来是没有问题的。能运行。 自己补充做了视频中未实现的读取和写入数据部分【欢迎小伙伴指正不对的地方】 目录 前言一、项目Step1. 创建项目Step2. 创建动态图片展示Step3. 创建图片型按钮Step4. 创建下拉框Ste…

vue3表格使用拖拽排序

拖拽排序 实现效果实现步骤拖拽排序功能的完整代码 实现效果 实现步骤 先安装sortable.js库使用的vue文件中引入 import Sortablejs from ‘sortablejs’在进入页面后创建sortable实例在提交后端时可获取到排序后的最新table列表数据 sortable.js文档 拖拽排序功能的完整代码 …

SpringBoot中常用的注解及其用法

1. 常用类注解 RestController和Controller是Spring中用于定义控制器的两个类注解. 1.1 RestController RestController是一个组合类注解,是Controller和ResponseBody两个注解的组合,在使 用 RestController 注解标记的类中&#xff0c;每个方法的返回值都会以 JSON 或 XML…

4 C 语言控制流与循环结构的深入解读

目录 1 复杂表达式的计算过程 2 if-else语句 2.1 基本结构及示例 2.2 if-else if 多分支 2.3 嵌套 if-else 2.4 悬空的 else 2.5 注意事项 2.5.1 if 后面不要加分号 2.5.2 省略 else 2.5.3 省略 {} 2.5.4 注意点 3 while 循环 3.1 一般形式 3.2 流程特点 3.3 注…

语音识别概述

语音识别概述 一.什么是语音&#xff1f; 语音是语言的声学表现形式&#xff0c;是人类自然的交流工具。 图片来源&#xff1a;https://www.shenlanxueyuan.com/course/381 二.语音识别的定义 语音识别&#xff08;Automatic Speech Recognition, ASR 或 Speech to Text, ST…

智能厕所系统让厕位状态清晰可见

在当今科技飞速发展的时代&#xff0c;智能化的应用已经渗透到我们生活的方方面面&#xff0c;智能厕所系统就是其中一个令人瞩目的创新。其中&#xff0c;厕位有人无人实时显示这一功能&#xff0c;为人们带来了极大的便利和舒适。 当身处一个繁忙的公共场所&#xff0c;如商场…

嵌入式全栈设计思路:STM32G4+ChibiOS+FreeRTOS+PID控制+PFC算法构建高效智能电源管理系统(附代码示例)

智能电源管理系统是一个基于STM32G4微控制器的高性能数字电源控制解决方案。本项目旨在设计一个功能全面、高效稳定的电源管理系统,可广泛应用于工业控制、新能源、通信设备等领域。 1.1 系统主要特点 高精度数字电源控制&#xff1a;利用STM32G4的高性能ADC和定时器,实现精确…

【NLP实战】基于TextCNN的新闻文本分类

TextCNN文本分类在pytorch中的实现 基于TextCNN和transformers.BertTokenizer的新闻文本分类实现&#xff0c;包括训练、预测、数据加载和准确率评估。 目录 项目代码TextCNN网络结构相关模型仓库准备工作项目调参预测与评估 1.项目代码 https://github.com/NeoTse0622/Te…

C++相关概念和易错语法(22)(final、纯虚函数、继承多态难点)

1.final final在继承和多态中都可以使用&#xff0c;在继承中是指不想将自己被继承&#xff0c;在多态中是指不想该函数被重写&#xff0c;比较简单&#xff0c;下面是一些使用例子。 2.纯虚函数 当我们需要抽象一个类的时候&#xff0c;我们就需要用到纯虚函数。所谓抽象的类…

【微服务】Spring Cloud Config解决的问题和案例

文章目录 强烈推荐引言解决问题1. 配置管理的集中化2. 配置的版本控制3. 环境特定配置4. 配置的动态刷新5. 安全管理敏感数据6. 配置的一致性 组件1. **配置服务器&#xff08;Config Server&#xff09;**2. **配置客户端&#xff08;Config Client&#xff09;** 配置示例配置…

电脑数据恢复软件哪个好?这六款软件轻松恢复数据

随着电脑使用的日益频繁&#xff0c;数据的丢失也成为了一个不可避免的问题。在生活中&#xff0c;我们常因误删除、误格式化、分区失败、中病毒等而丢失数据。在这种情况下&#xff0c;一个好的数据恢复软件就显得尤为重要。 电脑数据恢复软件哪个好&#xff1f;本文将为大家…

Midjourney 商业实战案例(附AI学习工具教程资料)

前言 Midjourney 商业实战案例 &#xff08;附AI学习工具教程资料&#xff09; 如何把 AI 绘画应用到设计工作中&#xff1f; AI 绘画技术可以应用于设计工作中&#xff0c;帮助设计师更快速、更高效地完成设计工作&#xff0c;以下是一些常见的应用&#xff1a; **1. 快速…