6.S081的Lab学习——Lab11: Network

文章目录

  • 前言
  • Network
    • 提示:
      • 实现e1000_transmit的一些提示:
      • 实现e1000_recv的一些提示:
    • 解析
  • 总结


前言

一个本硕双非的小菜鸡,备战24年秋招。打算尝试6.S081,将它的Lab逐一实现,并记录期间心酸历程。
代码下载

官方网站:6.S081官方网站

安装方式:
通过 APT 安装 (Debian/Ubuntu)
确保你的 debian 版本运行的是 “bullseye” 或 “sid”(在 ubuntu 上,这可以通过运行 cat /etc/debian_version 来检查),然后运行:

sudo apt-get install git build-essential gdb-multiarch qemu-system-misc gcc-riscv64-linux-gnu binutils-riscv64-linux-gnu 

(“buster”上的 QEMU 版本太旧了,所以你必须单独获取。

qemu-system-misc 修复
此时此刻,似乎软件包 qemu-system-misc 收到了一个更新,该更新破坏了它与我们内核的兼容性。如果运行 make qemu 并且脚本在 qemu-system-riscv64 -machine virt -bios none -kernel/kernel -m 128M -smp 3 -nographic -drive file=fs.img,if=none,format=raw,id=x0 -device virtio-blk-device,drive=x0,bus=virtio-mmio-bus.0 之后出现挂起

则需要卸载该软件包并安装旧版本:

  $ sudo apt-get remove qemu-system-misc
  $ sudo apt-get install qemu-system-misc=1:4.2-3ubuntu6

在 Arch 上安装

sudo pacman -S riscv64-linux-gnu-binutils riscv64-linux-gnu-gcc riscv64-linux-gnu-gdb qemu-arch-extra

测试您的安装
若要测试安装,应能够检查以下内容:

$ riscv64-unknown-elf-gcc --version
riscv64-unknown-elf-gcc (GCC) 10.1.0
...

$ qemu-system-riscv64 --version
QEMU emulator version 5.1.0

您还应该能够编译并运行 xv6: 要退出 qemu,请键入:Ctrl-a x。

# in the xv6 directory
$ make qemu
# ... lots of output ...
init: starting sh
$

在本实验中,您将获得重新设计代码以提高并行性的经验。多核机器上并行性差的一个常见症状是频繁的锁争用。提高并行性通常涉及更改数据结构和锁定策略以减少争用。您将对xv6内存分配器和块缓存执行此操作。

切换分支执行操作

git stash
git fetch
git checkout net
make clean

Network

您将使用名为E1000的网络设备来处理网络通信。对于xv6(以及您编写的驱动程序),E1000看起来像是连接到真正以太网局域网(LAN)的真正硬件。事实上,用于与您的驱动程序对话的E1000是qemu提供的模拟,连接到的LAN也由qemu模拟。在这个模拟LAN上,xv6(“来宾”)的IP地址为10.0.2.15。Qemu还安排运行Qemu的计算机出现在IP地址为10.0.2.2的LAN上。当xv6使用E1000将数据包发送到10.0.2.2时,qemu会将数据包发送到运行qemu的(真实)计算机上的相应应用程序(“主机”)。

您将使用QEMU的“用户模式网络栈(user-mode network stack)”。QEMU的文档中有更多关于用户模式栈的内容。我们已经更新了Makefile以启用QEMU的用户模式网络栈和E1000网卡。

Makefile将QEMU配置为将所有传入和传出数据包记录到实验目录中的packets.pcap文件中。查看这些记录可能有助于确认xv6正在发送和接收您期望的数据包。要显示记录的数据包,请执行以下操作:

tcpdump -XXnr packets.pcap

我们已将一些文件添加到本实验的xv6存储库中。kernel/e1000.c文件包含E1000的初始化代码以及用于发送和接收数据包的空函数,您将填写这些函数。kernel/e1000_dev.h包含E1000定义的寄存器和标志位的定义,并在《 英特尔E1000软件开发人员手册》中进行了描述。kernel/net.c和kernel/net.h包含一个实现IP、UDP和ARP协议的简单网络栈。这些文件还包含用于保存数据包的灵活数据结构(称为mbuf)的代码。最后,kernel/pci.c包含在xv6引导时在PCI总线上搜索E1000卡的代码。

您的工作是在kernel/e1000.c中完成e1000_transmit()和e1000_recv(),以便驱动程序可以发送和接收数据包。当make grade表示您的解决方案通过了所有测试时,您就完成了。

[!TIP] 在编写代码时,您会发现自己参考了《E1000软件开发人员手册》。以下部分可能特别有用:

Section 2是必不可少的,它概述了整个设备。
Section 3.2概述了数据包接收。
Section 3.3与Section 3.4一起概述了数据包传输。
Section 13概述了E1000使用的寄存器。
Section 14可能会帮助您理解我们提供的init代码。

浏览《E1000软件开发人员手册》。本手册涵盖了几个密切相关的以太网控制器。QEMU模拟82540EM。现在浏览第2章,了解该设备。要编写驱动程序,您需要熟悉第3章和第14章以及第4.1节(虽然不包括4.1的子节)。你还需要参考第13章。其他章节主要介绍你的驱动程序不必与之交互的E1000组件。一开始不要担心细节;只需了解文档的结构,就可以在以后找到内容。E1000具有许多高级功能,其中大部分您可以忽略。完成这个实验只需要一小部分基本功能。

我们在e1000.c中提供的e1000_init()函数将E1000配置为读取要从RAM传输的数据包,并将接收到的数据包写入RAM。这种技术称为DMA,用于直接内存访问,指的是E1000硬件直接向RAM写入和读取数据包。

由于数据包突发到达的速度可能快于驱动程序处理数据包的速度,因此e1000_init()为E1000提供了多个缓冲区,E1000可以将数据包写入其中。E1000要求这些缓冲区由RAM中的“描述符”数组描述;每个描述符在RAM中都包含一个地址,E1000可以在其中写入接收到的数据包。struct rx_desc描述描述符格式。描述符数组称为接收环或接收队列。它是一个圆环,在这个意义上,当网卡或驱动程序到达队列的末尾时,它会绕回到数组的开头。e1000_init()使用mbufalloc()为要进行DMA的E1000分配mbuf数据包缓冲区。此外还有一个传输环,驱动程序将需要E1000发送的数据包放入其中。e1000_init()将两个环的大小配置为RX_RING_SIZE和TX_RING_SIZE。

当net.c中的网络栈需要发送数据包时,它会调用e1000_transmit(),并使用一个保存要发送的数据包的mbuf作为参数。传输代码必须在TX(传输)环的描述符中放置指向数据包数据的指针。struct tx_desc描述了描述符的格式。您需要确保每个mbuf最终被释放,但只能在E1000完成数据包传输之后(E1000在描述符中设置E1000_TXD_STAT_DD位以指示此情况)。

当当E1000从以太网接收到每个包时,它首先将包DMA到下一个RX(接收)环描述符指向的mbuf,然后产生一个中断。e1000_recv()代码必须扫描RX环,并通过调用net_rx()将每个新数据包的mbuf发送到网络栈(在net.c中)。然后,您需要分配一个新的mbuf并将其放入描述符中,以便当E1000再次到达RX环中的该点时,它会找到一个新的缓冲区,以便DMA新数据包。

除了在RAM中读取和写入描述符环外,您的驱动程序还需要通过其内存映射控制寄存器与E1000交互,以检测接收到数据包何时可用,并通知E1000驱动程序已经用要发送的数据包填充了一些TX描述符。全局变量regs包含指向E1000第一个控制寄存器的指针;您的驱动程序可以通过将regs索引为数组来获取其他寄存器。您需要特别使用索引E1000_RDT和E1000_TDT。

要测试驱动程序,请在一个窗口中运行make server,在另一个窗口中运行make qemu,然后在xv6中运行nettests。nettests中的第一个测试尝试将UDP数据包发送到主机操作系统,地址是make server运行的程序。如果您还没有完成实验,E1000驱动程序实际上不会发送数据包,也不会发生什么事情。

完成实验后,E1000驱动程序将发送数据包,qemu将其发送到主机,make server将看到它并发送响应数据包,然后E1000驱动程序和nettests将看到响应数据包。但是,在主机发送应答之前,它会向xv6发送一个“ARP”请求包,以找出其48位以太网地址,并期望xv6以ARP应答进行响应。一旦您完成了对E1000驱动程序的工作,kernel/net.c就会处理这个问题。如果一切顺利,nettests将打印testing ping: OK,make server将打印a message from xv6!。

tcpdump -XXnr packets.pcap应该生成这样的输出:

reading from file packets.pcap, link-type EN10MB (Ethernet)
15:27:40.861988 IP 10.0.2.15.2000 > 10.0.2.2.25603: UDP, length 19
        0x0000:  ffff ffff ffff 5254 0012 3456 0800 4500  ......RT..4V..E.
        0x0010:  002f 0000 0000 6411 3eae 0a00 020f 0a00  ./....d.>.......
        0x0020:  0202 07d0 6403 001b 0000 6120 6d65 7373  ....d.....a.mess
        0x0030:  6167 6520 6672 6f6d 2078 7636 21         age.from.xv6!
15:27:40.862370 ARP, Request who-has 10.0.2.15 tell 10.0.2.2, length 28
        0x0000:  ffff ffff ffff 5255 0a00 0202 0806 0001  ......RU........
        0x0010:  0800 0604 0001 5255 0a00 0202 0a00 0202  ......RU........
        0x0020:  0000 0000 0000 0a00 020f                 ..........
15:27:40.862844 ARP, Reply 10.0.2.15 is-at 52:54:00:12:34:56, length 28
        0x0000:  ffff ffff ffff 5254 0012 3456 0806 0001  ......RT..4V....
        0x0010:  0800 0604 0002 5254 0012 3456 0a00 020f  ......RT..4V....
        0x0020:  5255 0a00 0202 0a00 0202                 RU........
15:27:40.863036 IP 10.0.2.2.25603 > 10.0.2.15.2000: UDP, length 17
        0x0000:  5254 0012 3456 5255 0a00 0202 0800 4500  RT..4VRU......E.
        0x0010:  002d 0000 0000 4011 62b0 0a00 0202 0a00  .-....@.b.......
        0x0020:  020f 6403 07d0 0019 3406 7468 6973 2069  ..d.....4.this.i
        0x0030:  7320 7468 6520 686f 7374 21              s.the.host!

您的输出看起来会有些不同,但它应该包含字符串“ARP, Request”,“ARP, Reply”,“UDP”,“a.message.from.xv6”和“this.is.the.host”。

nettests执行一些其他测试,最终通过(真实的)互联网将DNS请求发送到谷歌的一个名称服务器。您应该确保您的代码通过所有这些测试,然后您应该看到以下输出:

$ nettests
nettests running on port 25603
testing ping: OK
testing single-process pings: OK
testing multi-process pings: OK
testing DNS
DNS arecord for pdos.csail.mit.edu. is 128.52.129.126
DNS OK
all tests passed.

您应该确保make grade同意您的解决方案通过。

提示:

首先,将打印语句添加到e1000_transmit()和e1000_recv(),然后运行make server和(在xv6中)nettests。您应该从打印语句中看到,nettests生成对e1000_transmit的调用。

实现e1000_transmit的一些提示:

  1. 首先,通过读取E1000_TDT控制寄存器,向E1000询问等待下一个数据包的TX环索引。
  2. 然后检查环是否溢出。如果E1000_TXD_STAT_DD未在E1000_TDT索引的描述符中设置,则E1000尚未完成先前相应的传输请求,因此返回错误。
  3. 否则,使用mbuffree()释放从该描述符传输的最后一个mbuf(如果有)。
  4. 然后填写描述符。m->head指向内存中数据包的内容,m->len是数据包的长度。设置必要的cmd标志(请参阅E1000手册的第3.3节),并保存指向mbuf的指针,以便稍后释放。
  5. 最后,通过将一加到E1000_TDT再对TX_RING_SIZE取模来更新环位置。
  6. 如果e1000_transmit()成功地将mbuf添加到环中,则返回0。如果失败(例如,没有可用的描述符来传输mbuf),则返回-1,以便调用方知道应该释放mbuf。

实现e1000_recv的一些提示:

  1. 首先通过提取E1000_RDT控制寄存器并加一对RX_RING_SIZE取模,向E1000询问下一个等待接收数据包(如果有)所在的环索引。
  2. 然后通过检查描述符status部分中的E1000_RXD_STAT_DD位来检查新数据包是否可用。如果不可用,请停止。
  3. 否则,将mbuf的m->len更新为描述符中报告的长度。使用net_rx()将mbuf传送到网络栈。
  4. 然后使用mbufalloc()分配一个新的mbuf,以替换刚刚给net_rx()的mbuf。将其数据指针(m->head)编程到描述符中。将描述符的状态位清除为零。
  5. 最后,将E1000_RDT寄存器更新为最后处理的环描述符的索引。
  6. e1000_init()使用mbufs初始化RX环,您需要通过浏览代码来了解它是如何做到这一点的。
  7. 在某刻,曾经到达的数据包总数将超过环大小(16);确保你的代码可以处理这个问题。

您将需要锁来应对xv6可能从多个进程使用E1000,或者在中断到达时在内核线程中使用E1000的可能性。

解析

最后一题了,说真的这题就是6.S081最后的仁慈
这题其实并不重要,但是本着来都来了的原则,给6.S081来个完美的收尾吧!

这题核心就是用来解决设备驱动与网卡设备之间的通信问题。我们可以通过寄存器映射,将硬件的寄存器给映射到了内核的地址空间中,我们访问内核的某个地址,就是在访问硬件的寄存器,这一下子就打通了内核和硬件之间的桥梁

伪代码已经给好,照着实现就行。主要负责将一个 mbuf(内存缓冲区,用于存储网络数据包)传递给 e1000 网络接口卡以进行传输。实现了将网络数据包发送到 e1000 网卡的逻辑。包括获取锁、检查发送状态、释放旧的 mbuf、设置新的发送描述符、更新寄存器和释放锁。

//kernel/e1000.c
int
e1000_transmit(struct mbuf *m)
{
  //
  // Your code here.
  acquire(&e1000_lock);
  // 查询ring里下一个packet的下标
  int idx = regs[E1000_TDT];

  if ((tx_ring[idx].status & E1000_TXD_STAT_DD) == 0) {
    // 之前的传输还没有完成
    release(&e1000_lock);
    return -1;
  }

  // 释放上一个包的内存
  if (tx_mbufs[idx])
    mbuffree(tx_mbufs[idx]);

  // 把这个新的网络包的pointer塞到ring这个下标位置
  tx_mbufs[idx] = m;
  tx_ring[idx].length = m->len;
  tx_ring[idx].addr = (uint64) m->head;
  tx_ring[idx].cmd = E1000_TXD_CMD_RS | E1000_TXD_CMD_EOP;
  regs[E1000_TDT] = (idx + 1) % TX_RING_SIZE;

  release(&e1000_lock);
  return 0;
  //
  // the mbuf contains an ethernet frame; program it into
  // the TX descriptor ring so that the e1000 sends it. Stash
  // a pointer so that it can be freed after sending.
  //
  
  return 0;
}

另外一个,处理从 e1000 网络接口卡接收到的数据包。实现了从 e1000 网卡接收数据包的逻辑,包括检查新数据包、传递给网络栈、分配新的 mbuf 以及更新接收描述符和硬件寄存器。

//kernel/e1000.c
static void
e1000_recv(void)
{
  //
  // Your code here.
    while (1) {
    // 把所有到达的packet向上层递交
    int idx = (regs[E1000_RDT] + 1) % RX_RING_SIZE;
    if ((rx_ring[idx].status & E1000_RXD_STAT_DD) == 0) {
      // 没有新包了
      return;
    }
    rx_mbufs[idx]->len = rx_ring[idx].length;
    // 向上层network stack传输
    net_rx(rx_mbufs[idx]);
    // 把这个下标清空 放置一个空包
    rx_mbufs[idx] = mbufalloc(0);
    rx_ring[idx].status = 0;
    rx_ring[idx].addr = (uint64)rx_mbufs[idx]->head;
    regs[E1000_RDT] = idx;
   }
  //
  // Check for packets that have arrived from the e1000
  // Create and deliver an mbuf for each packet (using net_rx()).
  //
}

成功!
在这里插入图片描述

总结

总算是完成了6.s081的所有lab了,中间其实断断续续的,感觉努力整的话一个多月就能差不多了。最大的收获就是能够亲自实现了曾经只是在纸面上学习过的某些定义。感觉深入的理解了底层的原理这种感觉是非常好的。想起侯捷老师曾说过的“源码面前了无秘密”。感觉如果真的有时间精力的话看看这些代码,学习人家怎么的流程真的挺好的。我感觉我可以跟面试官多叭叭两句了(笑)。
听过这个实验开始变得水了,很多人都在往简历上写emmm。。。不过真的不影响他的含金量, 这几个斯坦福大学的实验都值得一做。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/798845.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

python如何结束程序运行

方法1:采用sys.exit(0),正常终止程序,从图中可以看到,程序终止后shell运行不受影响。 方法2:采用os._exit(0)关闭整个shell,从图中看到,调用sys._exit(0)后整个shell都重启了(RESTAR…

【接口自动化_13课_接口自动化总结】

一、自我介绍 二、项目介绍 自己的职责、项目流程 1)功能测试,怎么设计用例的--测试策略 2)功能测试为什么还有代码实现,能用工具实现,为什么还用代码实现。 基本情况 项目名称:项目类型:项目测试人员…

文本分类--NLP-AI(八)

文本分类任务 任务简介1.字符数值化方式1方式2 2.池化(pooling)3.全连接层4.归一化函数(Sigmoid)5.总结 从任务抽象新的技术点Embedding层池化层 任务简介 任务介绍: 字符串分类,根据一句话的含妈量&#…

2024最新Cloudways主机使用教程(含最新Cloudways折扣码)

Cloudways是一家提供云托管服务的公司,可以帮助你轻松管理和运行你的网站。本教程是Cloudways主机注册和使用教程。Cloudways界面简洁,使用方便,不需要复杂的设置,就能快速搭建一个WordPress网站。它的主机功能包括高级缓存和Bree…

GEO数据挖掘从数据下载处理质控到差异分析全流程分析步骤指南

综合的教学视频介绍 GEO数据库挖掘分析作图全流程每晚11点在线教学直播录屏回放视频: https://www.bilibili.com/video/BV1rm42157CT/ GEO数据从下载到各种挖掘分析全流程详解: https://www.bilibili.com/video/BV1nm42157ii/ 一篇今年近期发表的转…

[misc]-流量包-wireshark-icmp

wireshark打开,大部分都是icmp,查看data部分 提取data长度: tshark.exe -r 1.pcapng -T fields -e data.len > length.txt 使用python解析这个文件,剔除异常值,每8个取一个值,得到flag ds [] with open(length.tx…

Pytorch张量

在conda的环境中安装Jupyter及其他软件包 Pytorch 建立在张量(tensor)之上,Pytorch张量是一个 n 维数组,类似于 NumPy 数组。专门针对GPU设计,可以运行在GPU上以加快计算效率。换句话说,Pytorch张量是可以运…

重要特性——链接

链接允许你创建对文件或目录的引用,而不必复制其内容。 1.硬链接:硬链接是指向同一文件系统的同一个inode(索引节点)的多个文件名。这意味着每个硬链接实际上是同一个文件的不同名字。改变文件内容将影响所有硬链接,因…

机器学习——决策树(笔记)

目录 一、认识决策树 1. 介绍 2. 决策树生成过程 二、sklearn中的决策树 1. tree.DecisionTreeClassifier(分类树) (1)模型基本参数 (2)模型属性 (3)接口 2. tree.Decision…

创维汽车与深圳市互充充签订战略合作协议,首批订单100辆超充车型!

2024年6月19日,创维汽车与深圳互充充网络科技有限公司于创维汽车徐州基地签订战略合作协议。此次合作旨在通过技术创新和资源整合,在汽车销售、融资租赁、绿色低碳等领域深化合作,拓展合作业务,创新合作模式,共同推动新…

常用控件(六)

布局管理器 布局管理器垂直布局QHBoxLayoutQGridLayoutQFormLayoutQSpacerItem 布局管理器 之前使⽤ Qt 在界⾯上创建的控件, 都是通过 “绝对定位” 的⽅式来设定的. 也就是每个控件所在的位置, 都需要计算坐标, 最终通过 setGeometry 或者 move ⽅式摆放过去.这种设定⽅式其…

麒麟系统开发笔记(十四):在国产麒麟系统上编译libmodbus库、搭建基础开发环境和移植测试Demo

若该文为原创文章,转载请注明原文出处 本文章博客地址:https://hpzwl.blog.csdn.net/article/details/140387947 长沙红胖子Qt(长沙创微智科)博文大全:开发技术集合(包含Qt实用技术、树莓派、三维、OpenCV…

【爱上C++】vector模拟实现

文章目录 前言一:基本框架1.结构的定义2.构造函数①.详解 const T& val T()②.为什么要多加一个int类的带参构造?】 3.析构函数4.size()和capacity()5.push_back尾插6.operator[]operator[]的返回类型为T&有以下几个原因: 二&#x…

【python】UnboundLocalError报错分析:原因、解决办法与避免策略

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,…

Geoserver发布wmts服务

注意事项:因为这里我安装的是geoserver2.25.2,所以jdk版本换成11,安装17的时候点击浏览文件,右上角转圈,f12打开控制台发现报错500 1、新建网格集 2、把自己新建的网格集添加到Caching Defaults中 3、新建工作空间 4、…

JVM:运行时数据区

文章目录 一、总览二、程序计数器1、介绍2、程序计数器在运行中会出现内存溢出吗? 三、栈1、介绍2、栈帧的组成部分(1)局部变量表(2)操作数栈(3)帧数据(3)栈内存溢出&…

Golang | Leetcode Golang题解之第229题多数元素II

题目: 题解: func majorityElement(nums []int) (ans []int) {cnt : map[int]int{}for _, v : range nums {cnt[v]}for v, c : range cnt {if c > len(nums)/3 {ans append(ans, v)}}return }

知识图谱和 LLM:利用 Neo4j 实现大型语言模型

这是关于 Neo4j 的 NaLLM 项目的一篇博客文章。这个项目是为了探索、开发和展示这些 LLM 与 Neo4j 结合的实际用途。 2023 年,ChatGPT 等大型语言模型 (LLM) 因其理解和生成类似人类的文本的能力而风靡全球。它们能够适应不同的对话环境、回答各种主题的问题,甚至模拟创意写…

【系统架构设计师】十二、系统架构设计(软件架构概述|构件|软件架构风格|软件架构复用)

目录 一、软件架构概述 1.1 软件架构定义 1.2 软件架构设计与生命周期 1.3 软件架构的重要性 二、构件 2.1 构件的特性 2.2 对象的特性 2.3 构件接口 2.4 面向构件的编程(COP) 2.5 构件技术 三、软件架构风格 3.1 数据流风格 3.2 调用/返回风格 3.3 独立构件风格…

Vue3+Vite+TS+Axios整合详细教程

1. Vite 简介 Vite是新一代的前端构建工具,在尤雨溪开发Vue3.0的时候诞生。类似于Webpack Webpack-dev-server。其主要利用浏览器ESM特性导入组织代码,在服务器端按需编译返回,完全跳过了打包这个概念,服务器随起随用。生产中利用…