《Go 语言第一课》课程学习笔记(八)

基本数据类型

Go 原生支持的数值类型有哪些?

  • Go 语言的类型大体可分为基本数据类型、复合数据类型和接口类型这三种。
    • 其中,我们日常 Go 编码中使用最多的就是基本数据类型,而基本数据类型中使用占比最大的又是数值类型。

整型

  • Go 语言的整型,主要用来表示现实世界中整型数量等。它可以分为平台无关整型和平台相关整型这两种,它们的区别主要就在,这些整数类型在不同 CPU 架构或操作系统下面,它们的长度是否是一致的。
    • 平台无关整型
      • 它们在任何 CPU 架构或任何操作系统下面,长度都是固定不变的。
        在这里插入图片描述
      • 有符号整型(int8-int64)和无符号整型(uint8-uint64)的本质差别在于最高二进制位(bit 位)是否被解释为符号位,这点会影响到无符号整型与有符号整型的取值范围。
      • Go 采用 2 的补码(Two’s Complement)作为整型的比特位编码方法。因此,我们不能简单地将最高比特位看成负号,把其余比特位表示的值看成负号后面的数值。Go 的补码是通过原码逐位取反后再加 1 得到的。
    • 平台相关整型
      • 与平台无关整型对应的就是平台相关整型,它们的长度会根据运行平台的改变而改变。
      • Go 语言原生提供了三个平台相关整型,它们是 int、uint 与 uintptr。
        在这里插入图片描述
      • 由于这三个类型的长度是平台相关的,所以我们在编写有移植性要求的代码时,千万不要强依赖这些类型的长度。
      • 如果不知道这三个类型在目标运行平台上的长度,可以通过 unsafe 包提供的 SizeOf 函数来获取。
  • 整型的溢出问题
    • 如果这个整型因为参与某个运算,导致结果超出了这个整型的值边界,我们就说发生了整型溢出的问题。
    • 由于整型无法表示它溢出后的那个“结果”,所以出现溢出情况后,对应的整型变量的值依然会落到它的取值范围内,只是结果值与我们的预期不符,导致程序逻辑出错。
  • 字面值与格式化输出
    • Go 语言在设计开始,就继承了 C 语言关于数值字面值(Number Literal)的语法形式。
    • 早期 Go 版本支持十进制、八进制、十六进制的数值字面值形式。
    • Go 1.13 版本中,Go 又增加了对二进制字面值的支持和两种八进制字面值的形式。
    • 为提升字面值的可读性,Go 1.13 版本还支持在字面值中增加数字分隔符“_”,分隔符可以用来将数字分组以提高可读性。
    • 反过来,我们也可以通过标准库 fmt 包的格式化输出函数,将一个整型变量输出为不同进制的形式。

浮点型

  • 浮点型的二进制表示
    • Go 语言提供了 float32 与 float64 两种浮点类型,它们分别对应单精度与双精度浮点数值类型。
      • 不过,Go 语言中没有提供 float 类型
      • 换句话说,Go 提供的浮点类型都是平台无关的。
      • 无论是 float32 还是 float64,它们的变量的默认值都为 0.0,不同的是它们占用的内存空间大小是不一样的,可以表示的浮点数的范围与精度也不同。
    • 浮点数在内存中的二进制表示(Bit Representation)要比整型复杂得多:在这里插入图片描述
      • 浮点数在内存中的二进制表示分三个部分:符号位、阶码(即经过换算的指数),以及尾数。这样表示的一个浮点数,它的值等于: ( − 1 ) s ∗ 1. M ∗ 2 E − o f f s e t (-1)^s * 1.M * 2 ^{E-offset} (1)s1.M2Eoffset
        • 当符号位为 1 时,浮点值为负值;
        • 当符号位为 0 时,浮点值为正值。
        • 公式中 offset 被称为阶码偏移值。
      • 单精度(float32)与双精度(float64)浮点数在阶码和尾数上的不同:
        在这里插入图片描述
        • 单精度浮点类型(float32)为符号位分配了 1 个 bit,为阶码分配了 8 个 bit,剩下的 23 个 bit 分给了尾数。
        • 而双精度浮点类型,除了符号位的长度与单精度一样之外,其余两个部分的长度都要远大于单精度浮点型,阶码可用的 bit 位数量为 11,尾数则更是拥有了 52 个 bit 位。
  • 字面值与格式化输出
    • Go 浮点类型字面值大体可分为两类,一类是直白地用十进制表示的浮点值形式。这一类,我们通过字面值就可直接确定它的浮点值。
    • 另一类则是科学计数法形式。采用科学计数法表示的浮点字面值,我们需要通过一定的换算才能确定其浮点值。而且在这里,科学计数法形式又分为十进制形式表示的,和十六进制形式表示的两种。
      6674.28e-2 // 6674.28 * 10^(-2) = 66.742800
      .12345E+5 // 0.12345 * 10^5 = 12345.000000
      0x2.p10 // 2.0 * 2^10 = 2048.000000
      0x1.Fp+0 // 1.9375 * 2^0 = 1.937500
      

复数类型

  • Go 提供两种复数类型,它们分别是 complex64 和 complex128,complex64 的实部与虚部都是 float32 类型,而 complex128 的实部与虚部都是 float64 类型。如果一个复数没有显示赋予类型,那么它的默认类型为 complex128。
  • 关于复数字面值的表示,我们其实有三种方法:
    • 第一种,我们可以通过复数字面值直接初始化一个复数类型变量:var c = 5 + 6i
    • 第二种,Go 还提供了 complex 函数,方便我们创建一个 complex128 类型值:var c = complex(5, 6) // 5 + 6i
    • 第三种,你还可以通过 Go 提供的预定义的函数 real 和 imag,来获取一个复数的实部与虚部,返回值为一个浮点类型:
      var c = complex(5, 6) // 5 + 6i
      r := real(c) // 5.000000
      i := imag(c) // 6.000000
      

字符串类型

  • 在 Go 中,字符串类型为 string。
    • Go 语言通过 string 类型统一了对“字符串”的抽象。
    • 这样无论是字符串常量、字符串变量或是代码中出现的字符串字面值,它们的类型都被统一设置为 string。
    • string 类型的数据是不可变的,提高了字符串的并发安全性和存储利用率。
  • Go 字符串的组成
    • Go 语言中的字符串值也是一个可空的字节序列,字节序列中的字节个数称为该字符串的长度。一个个的字节只是孤立数据,不表意。
    • 字符串是由一个可空的字符序列构成。
  • rune 类型与字符字面值
    • Go 使用 rune 这个类型来表示一个 Unicode 码点。rune 本质上是 int32 类型的别名类型,它与 int32 类型是完全等价的。
    • 一个 rune 实例就是一个 Unicode 字符,一个 Go 字符串也可以被视为 rune 实例的集合。我们可以通过字符字面值来初始化一个 rune 变量。
    • 在 Go 中,字符字面值有多种表示法,最常见的是通过单引号括起的字符字面值。
    • 我们还可以使用 Unicode 专用的转义字符\u 或\U 作为前缀,来表示一个 Unicode 字符。
    • 由于表示码点的 rune 本质上就是一个整型数,所以我们还可用整型值来直接作为字符字面值给 rune 变量赋值。
  • 字符串字面值
    • 字符串是字符的集合,我们需要把表示单个字符的单引号,换为表示多个字符组成的字符串的双引号。
    • string 类型其实是一个“描述符”,它本身并不真正存储字符串数据,而仅是由一个指向底层存储的指针和字符串的长度字段组成的。
    • 我们直接将 string 类型通过函数 / 方法参数传入也不会带来太多的开销。因为传入的仅仅是一个“描述符”,而不是真正的字符串数据。
  • Go 字符串类型的常见操作
    • 下标
      • 在字符串的实现中,真正存储数据的是底层的数组。
      • 字符串的下标操作本质上等价于底层数组的下标操作。
        var s = "中国人"
        fmt.Printf("0x%x\n", s[0]) // 0xe4:字符“中” utf-8编码的第一个字节
        
      • 通过下标操作,我们获取的是字符串中特定下标上的字节,而不是字符。
    • 字符迭代
      • Go 有两种迭代形式:常规 for 迭代与 for range 迭代。
      • 通过这两种形式的迭代对字符串进行操作得到的结果是不同的。
      • 通过常规 for 迭代对字符串进行的操作是一种字节视角的迭代,每轮迭代得到的的结果都是组成字符串内容的一个字节,以及该字节所在的下标值,这也等价于对字符串底层数组的迭代。
      • 通过 for range 迭代,我们每轮迭代得到的是字符串中 Unicode 字符的码点值,以及该字符在字符串中的偏移值。
      • 我们可以通过这样的迭代,获取字符串中的字符个数,而通过 Go 提供的内置函数 len,我们只能获取字符串内容的长度(字节个数)。
      • 获取字符串中字符个数更专业的方法,是调用标准库 UTF-8 包中的 RuneCountInString 函数。
    • 字符串连接
      • Go 原生支持通过 +/+= 操作符进行字符串连接。
      • 虽然通过 +/+= 进行字符串连接的开发体验是最好的,但连接性能就未必是最快的了。
      • 除了这个方法外,Go 还提供了 strings.Builder、strings.Join、fmt.Sprintf 等函数来进行字符串连接操作
    • 字符串比较
      • Go 字符串类型支持各种比较关系操作符,包括 = =、!= 、>=、<=、> 和 <。
      • 在字符串的比较上,Go 采用字典序的比较策略,分别从每个字符串的起始处,开始逐个字节地对两个字符串类型变量进行比较。
        • 当两个字符串之间出现了第一个不相同的元素,比较就结束了,这两个元素的比较结果就会做为串最终的比较结果。
        • 如果出现两个字符串长度不同的情况,长度比较小的字符串会用空元素补齐,空元素比其他非空元素都小。
      • 鉴于 Go string 类型是不可变的,所以说如果两个字符串的长度不相同,那么我们不需要比较具体字符串数据,也可以断定两个字符串是不同的。但是如果两个字符串长度相同,就要进一步判断,数据指针是否指向同一块底层存储数据。如果还相同,那么我们可以说两个字符串是等价的,如果不同,那就还需要进一步去比对实际的数据内容。
    • 字符串转换
      • Go 支持字符串与字节切片、字符串与 rune 切片的双向转换,并且这种转换无需调用任何函数,只需使用显式类型转换就可以了。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/79824.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Git常见操作

一、全局配置命令 配置级别&#xff1a; –local&#xff08;默认&#xff0c;高级优先&#xff09;&#xff1a;只影响本地仓库 –global(中优先级)&#xff1a;只影响所有当前用户的git仓库 –system&#xff08;低优先级&#xff09;&#xff1a;影响到全系统的git仓库 1…

【LVS】3、LVS+Keepalived群集

为什么用它&#xff0c;为了做高可用 服务功能 1.故障自动切换 2.健康检查 3.节点服务器高可用-HA Keepalived的三个模块&#xff1a; core&#xff1a;Keepalived的核心&#xff0c;负责主进程的启动、维护&#xff1b;调用全局配置文件进行加载和解析 vrrp&#xff1a;实…

elementui form组件出现英文提示

今天让解决一个bug&#xff0c;是表单组件提示词会出现英文。 问题情景如下&#xff1a; 有时会出现中文&#xff0c;有时会出现英文。 解决方法&#xff1a; 经查看&#xff0c;代码采用的是elementui的form组件&#xff0c;在el-form-item中使用了required属性&#xff0c;同…

string类(初识)

目录 1. 为什么学习string类&#xff1f; 1.1 C语言中的字符串 2. 标准库中的string类 2.1 string类(了解) 2.2 string类的常用接口说明 1. string类对象的常见构造 2. string类对象的 3. string类对象的访问及遍历操作 4. string类对象的修改操作 5. string类非成员函数…

POJ 3641 Pseudoprime numbers 米勒拉宾素数判定+埃氏筛法

一、思路 对于输入的一个数字n和a&#xff0c;我们用快速幂判断 n ^ a % n 是否等于n&#xff0c;如果不等于直接输出no&#xff0c;等于的话&#xff0c;再判断n是否为素数&#xff0c;如果n为素数&#xff0c;输出no&#xff0c;否则输出yes。 判断素数的话&#xff0c;对于…

Azure共享映像库构建VM镜像

什么是Azure共享映像库 Azure共享映像库是一项在Microsoft Azure中以共享方式存储和管理映像的服务。映像是预配置的虚拟机操作系统和应用程序的快照&#xff0c;可以用来创建多个虚拟机实例。通过将映像存储在共享映像库中&#xff0c;用户可以轻松地共享映像给其他Azure订阅…

Dubbo Spring Boot Starter 开发微服务应用

环境要求 系统&#xff1a;Windows、Linux、MacOS JDK 8 及以上&#xff08;推荐使用 JDK17&#xff09; Git IntelliJ IDEA&#xff08;可选&#xff09; Docker &#xff08;可选&#xff09; 项目介绍 在本任务中&#xff0c;将分为 3 个子模块进行独立开发&#xff…

数据分析--帆软报表--大数据大屏

进入国企公司学习有一段时间了&#xff0c;岗位是数据分析方向------ 母前使用的是帆软工具进行的开发。 可以进行大数据大屏 也可使嵌入到手机端。 下面是例子

【Freertos基础入门】队列(queue)的使用

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、队列是什么&#xff1f;二、队列的操作二、示例代码总结 前言 本系列基于stm32系列单片机来使用freerots FreeRTOS是一个广泛使用的开源实时操作系统&…

[LitCTF 2023]Ping

因为直接ping会有弹窗。这里在火狐f12,然后f1选禁用javascript,然后ping 然后输入127.0.0.1;cat /flag 得到flag&#xff0c; 查看其他大佬的wp &#xff0c;这里还可以抓包。但是不知道为什么我这里的burp 用不了

【Unity】坐标转换经纬度方法(应用篇)

【Unity】坐标转换经纬度方法&#xff08;应用篇&#xff09; 解决地图中经纬度坐标转换与unity坐标互转的问题。使用线性变换的方法&#xff0c;理论上可以解决小范围内所以坐标转换的问题。 之前有写过[Unity]坐标转换经纬度方法&#xff08;原理篇),在实际使用中&#xff0c…

使用percona-xtrabackup备份MySQL数据

xtrabackup备份分为两种 本文参考链接1 本文参考链接2 全量备份 1.备份数据 要创建备份&#xff0c;请xtrabackup使用xtrabackup --backup option. 您还需要指定一个xtrabackup --target-dir选项&#xff0c;即备份的存储位置&#xff0c;如果InnoDB数据或日志文件未存储在同…

Debian 10驱动Broadcom 无线网卡

用lspci命令查询无线网卡品牌&#xff1a; 运行下面代码后&#xff0c;重启即可。 apt-get install linux-image-$(uname -r|sed s,[^-]*-[^-]*-,,) linux-headers-$(uname -r|sed s,[^-]*-[^-]*-,,) broadcom-sta-dkms

Kotlin~Bridge桥接模式

概念 抽象和现实之间搭建桥梁&#xff0c;分离实现和抽象。 抽象&#xff08;What&#xff09;实现&#xff08;How&#xff09;用户可见系统正常工作的底层代码产品付款方式定义数据类型的类。处理数据存储和检索的类 角色介绍 Abstraction&#xff1a;抽象 定义抽象接口&…

泛微E8配置自定义触发流程失败

在新公司接了个配置泛微流程触发的活。因为泛微的官方文档并没有详细的操作指引&#xff0c;在测试环境配置之后、要触发的流程可以手工提交&#xff0c;但是触发一直不成功。简单记录下业务场景和其他处理信息&#xff0c;以供参考。 应用版本 目前使用了泛微 E8 &#xff0…

Spring Clould 注册中心 - Eureka,Nacos

视频地址&#xff1a;微服务&#xff08;SpringCloudRabbitMQDockerRedis搜索分布式&#xff09; Eureka 微服务技术栈导学&#xff08;P1、P2&#xff09; 微服务涉及的的知识 认识微服务-服务架构演变&#xff08;P3、P4&#xff09; 总结&#xff1a; 认识微服务-微服务技…

探索Python中的数据可视化利器:Plotly Express

一、引言 在数据分析和可视化领域&#xff0c;数据的有效呈现是至关重要的。Python作为一种强大的编程语言&#xff0c;提供了多种数据可视化工具和库。其中&#xff0c;Plotly Express是一款受欢迎的数据可视化库&#xff0c;它提供了简单易用的接口和丰富的图表类型&#xf…

keepalived集群

keepalived概述 keepalived软件就是通过vrrp协议来实现高可用功能。 VRRP通信原理 VRRP就是虚拟路由冗余协议&#xff0c;它的出现就是为了解决静态路由的单点故障。 VRRP是通过一种竞选一种协议机制来将路由交个某台VRRP路由器。 VRRP 用IP多播的方式&#xff08;多播地…

【.net】本地调试运行只能用localhost的问题

【.net】本地调试运行只能用localhost的问题 解决方案 找到到项目目录下 隐藏文件夹 .vs /项目名称/config/applicationhost.config <bindings><binding protocol"http" bindingInformation"*:1738:localhost" /></bindings> 再加一条你…

visual studio 2022配置

前提&#xff1a;我linux c 开发 一直在使用vscode 更新了个版本突然代码中的查找所用引用和变量修改名称不能用了&#xff0c;尝试了重新配置clang vc都不行&#xff0c;估计是插件问题&#xff0c;一怒之下改用visual studio 2022 为了同步2个IDE之间的差别&#xff0c;目前…