智算网络谜题,与“解密者”新华三

64224276c902535b9f9baae1a17e6356.jpeg

根据高盛研究公司(GSR)数据报告显示,AIGC将推动全球国民生产总值(GDP)增长7%,带来近7万亿美元的GDP增长,并在未来使生产力提高1.5%。面对如此巨大的价值涌现,每个行业、每家企业都希望率先推开AI时代之门。

而在面向AI大模型的探索中,智算的效率与成本成为关键问题。根据相关数据,每建设100P算力的集群,成本就要达到4亿人民币。根据此前OpenAI披露的数据,ChatGPT平均每天的训练算力花费达到了70万美元。

目前阶段,在AI算力价格持续上涨的大背景下,千卡、万卡训练集群已经成为常态。智算集群开始向五万卡演进,并且异构化开始成为智算集群的新常态。然而我们可以看到,有大量AI算力因智算网络的丢包问题被浪费,网络故障成为拖慢模型训练进度的常见因素,如何让网络适配异构算力成为重要难题。

可以说,智算网络已经成为AI基础设施发挥能效的关键。想要借助智算推开AI时代的大门,首选需要铸造智算网络这把钥匙。

d0de5e1df1d3a90a04db77e0fa01d219.png

那么,究竟如何才能破解智算网络的种种谜题?

不久之前,新华三集团发布了智算网络解决方案。这一方案主张充分发挥“算力×联接”的倍增效应,以标准化联接支撑多元算力释放。新华三也通过对算力和联接技术进行最佳的调优与配合,来实践了对于智算网络的技术主张。

从中我们可以看到,开放解耦就是智算网络的关键解题思路,是一把AI时代的智算网络之钥。

6a509d2584f66359524b055d8034db41.png

难题

异构算力互联的不确定性

当前,多元异构算力已经成为AI基础设施建设的主流选择。异构算力体系可以充分发挥各种计算设备的优势,具备多样性、灵活性、高效性等特点,能够更好发挥出智算效用。但是,在实际部署中,用户却必须面对异构算力互联的一系列不确定性。这些痛点的存在,极大程度限制了智算网络,甚至整个智算基础设施的发展。

首先,是智算网络本身的不确定性。

在大规模智算集群组网的情况下,智算网络本身会出现延迟、丢包等一系列不确定性因素。根据相关数据显示,智算网络达到1.5%的丢包率就会使数据吞吐量降低50%,而智算网络一旦出现故障,往往需要一周甚至几周的时间来进行修复。随着组网规模的扩大,智算网络的不确定性问题也会被持续放大。

761f026398272a671afb202219286c01.png

其次,是异构算力实施效果的不确定性。

异构算力已经成为智算基础设施的必然趋势,但在实际场景中,大多数用户对于智算场景都是初次接触,并不像传统ICT基础设施建设那样可以轻车熟路地进行规划、采购、部署。此外,在异构算力组网时就会遇到不同厂商组件的组合问题。服务器平台、GPU、网卡、光模块、交换机等领域都有大量的厂商参与。最终实施效果能否达到预期,不同厂商的组件能否实现互联互通,互通后的性能、可靠性、风险性如何,都是用户必须面临的不确定性问题。

再次,是智算网络与算力之间联动的不确定性。

为了保证智算业务有序平稳发展,网络必须与算力调度平台联动起来。而国内大多算力厂商没有配套的网络设备和平台。因此,想用网络打通异构算力,则必须具备与多家厂商的CCL(集合通信库)的兼容对接能力,将算力需求转译为网络配置,也就是所谓的“异构算网联动”。

想要解决异构算力互联所面临的一系列难题,实现异构算力的效果最大化,最佳选择就是在提升智算网络性能的同时,用网络来贯穿异构基础设施,拉通异构算力生态。为了实现这个目标,就必须推动智算网络走向开放解耦。

解题

将开放解耦作为智算网络之钥

c6064706436bbf7c5f9b46ea6668dded.png

在智算体系当中,网络是连接 CPU、xPU、内存、存储等资源的基础设施,贯穿数据计算、存储全流程,是拉通生态的重要介质。网络的冗余性、高可靠、高弹性,以及以太协议的开放性,可以帮助技术不成熟的产品消除限制,确保整个异构算力体系达成最优效果。

为了实现这个理想化目标,智算网络必须具备开放解耦的特质。

所谓开放,就是在联接上实现标准化,确保网络基础设施可以打通不同的算力组件,实现无痛、可实施的异构组网。

2efb87e044b8e8244a6f3480c5c3192a.png

新华三认为,在高性能网络领域,无损以太网(RoCE)是一个快速普及且被大众所认可的技术。基于无损以太网推进智算网络标准化,在成本、未来演进和生态丰富度上具备天然的优势。通过无损以太网的标准化建设,用户可以获得最具优势的方案,极大拓展选择上的自由度与实施上的可靠性。除此之外,用户还可以利用以太网的标准化特质,逐步构建大规模智算集群。实现根据业务需要,对智算集群进行灵活拓展升级。

所谓解耦,则是将网络平台与智算平台进行解耦,增强网络对于多元异构算力的承载能力,并且通过网络的应用感知和资源分配机制,及时响应各类应用需求,最终可以充分发挥算力生态中各领域的优势,实现资源共享和高效协作,帮助用户享有先进的AI智算平台、优秀的网络设备和高品质的联接介质。

基于开放解耦的智算网络建设理念,新华三推动解决了CPU、GPU、网卡、光模块等异构组件间的互联问题,打造了广泛适配、灵活扩展的网络联接。

开放解耦就像一把钥匙,可以联动智算集群的不同组件,以及智算生态中的各个角色,最终实现用户的智算目标价值最大化。带着这把钥匙,新华三打造了全新的智算网络解决方案,为用户打开了智能世界的大门。

ec9dd63dbab88c41abe2464ac9d2593a.png

实践

新华三的智算网络探索

开放解耦的网络建设理念,想要最终形成智算网络解决方案并不容易。它需要兼顾不同的组网方式、不同场景的网络调优需求,以及不同规模的智算中心网络建设需求,并且能够兼顾解决用户在规划、组网、用网、运维等不同阶段的技术要求。

最终,新华三聚焦网络优势,提供了强大、灵活、多元且具备高支撑度的异构算力互联架构,探索出了全新的智算网络解决方案。

如上文所说,对于异构算力互联来说,用户有生态开放、平台解耦、算网协同三方面的主要诉求。而新华三智算网络解决方案,恰好可以应对这些痛点。

在基于以太协议进行标准化智算组网领域,由于用户需要实现不同的组网架构,因此需要获得多元可靠的网络产品。为此,新华三可以提供多元化的产品布局,提供支持200G/400G/800G不同端口密度的盒式产品/框式产品,以及先进架构DDC(Distributed Disaggregated Chassis)产品,提供多种组网架构,满足不同规模、不同智算平台、不同建设环境的客户的需要。

在用网阶段,用户需要负载多样化的网卡,实现负载均衡。

为此,新华三智算网络解决方案带来了全局负载均衡技术,可以带来极致的带宽利用率,从而解决传统智算网络中通信流量拥塞敏感性高、低时延、高吞吐等需求,易导致负载分担不均、整网吞吐下降等问题。

同时,针对不同智算场景,新华三会提供最适合的负载均衡技术组合,合理调整流量的带宽利用问题,提升智算中心算力规模和效率。比如说,可以应用SprayLink解决链路均衡的问题,通过实时监控LACP/ECMP中各物理链路的带宽利用率,出口队列,缓存占用,传输时延等精细化数据,对大象流做到基于Per-Packet方式的动态负载分担,将每个数据包分配到当时资源最优的链路上,从而实现链路宽带利用率提升至95%的效果。

新华三认为,目前最优的负载均衡技术是DDC(Disaggregated Distributed Chassis分布式解耦机框)。它能将传统框式交换机的主控、网板、线卡分解为分布式的模块化部件,以提高网络的灵活性、可扩展性和性能。DDC基于信元交换,任何协议的流量在进入DDC架构时都可被切成等分大小的信元,在内部多条链路上负载,完全解决了Hash极化问题,可以实现100%的负载分担。在流量发出时,信元又将重组为原始数据。信元交换无视数据协议,不会产生乱序,对GPU和网卡都是天然解耦的。

此外,DDC架构扩展性强,传统框式设备无论如何设计,其容纳的端口都是有限的。而将其拆解之后,通过横向扩展可以支持数千个200G/400G端口,且最大可支持32K(400G)GPU卡,这是框式设备无法实现的,也可以大幅降低部署难度和功耗。新华三DDC产品拥有独立的高性能控制平面,可以实现网元失效后us级别的收敛,以及网元上线的快速即插即用,可靠性和灵活度均能实现业界领先。

在异构算网协同领域,新华三智算网络解决方案能够支持异构GPU/网卡的算网路径协同能力。一方面可以利用负载均衡来提升网络利用率,另一方面还能够通过控制器分析,主动进行选路与规划仿真,从上帝视角实现整网的协同处理。

7719b4b92e6ce55c331ee9f823d6a79f.png

除此之外,为了实现开放解耦的目标,新华三还搭建了业界最开放的生态合作环境。其各条产品线都采用了多家合作伙伴的交付件,包括GPU、网卡、光模块、交换芯片。基于这样的产业优势,新华三还实现了能够代替客户验证异构算力环境的兼容性。

新华三制定了智算网络异构连通专项测试,可对光模块、电缆进行高可靠性测试验证,从而解决了与网卡互联互通的问题,为客户提供一套经过验证过的交付方案。

通过在技术、产品、生态等环节践行开放解耦,新华三成功破解了异构算力互联的时代谜题,将AI基础设施的不确定性,换做智能时代产业价值的确定性。

dc82d23d6e84a71c04ac94d86f8c0e00.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/797908.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

JAVASE进阶day07(泛型,集合,Set,TreeSet,枚举,数据结构)

泛型 1.泛型的基本使用 限制集合存储的数据类型 package com.lu.day07.generics;/*** 定义了一个泛型类* E 泛型通配字母(不固定代替真实数据类型A-Z都可以)* 常见的泛型通配字母:* E:element 元素* T:type 类型* R:return 返回值类型* K:key 键* …

CV09_深度学习模块之间的缝合教学(4)--调参

深度学习就像炼丹。炉子就是模型,火候就是那些参数,材料就是数据集。 1.1 参数有哪些 调参调参,参数到底是哪些参数? 1.网络相关的参数:(1)神经网络网络层 (2)隐藏层…

SvANet:微小医学目标分割网络,增强早期疾病检测

SvANet:微小医学目标分割网络,增强早期疾病检测 提出背景前人工作医学对象分割微小医学对象分割注意力机制 SvANet 结构图SvANet 解法拆解解法逻辑链 论文:SvANet: A Scale-variant Attention-based Network for Small Medical Object Segmen…

PHP7.4安装使用rabbitMQ教程(windows)

(1),安装rabbitMQ客户端erlang语言 一,erlang语言安装 下载地址1—— 下载地址2——https://www.erlang.org/patches/otp-27.0 二,rabbitMQ客户端安装 https://www.rabbitmq.com/docs/install-windows &#xff08…

Python+wxauto=微信自动化?

Pythonwxauto微信自动化? 一、wxauto库简介 1.什么是wxauto库 wxauto是一个基于UIAutomation的开源Python微信自动化库。它旨在帮助用户通过编写Python脚本,轻松实现对微信客户端的自动化操作,从而提升效率并满足个性化需求。这一工具的出现&…

【Linux】重定向 | 为什么说”一切皆文件?“

目录 前言 1.文件描述符分配规则 2.dup2 重定向接口 3.重定向 3.1>输出重定向 3.2>>追加重定向 3.3<输入重定向 3.4 shell 模拟实现< > 3.5 理解> 4. 理解“Linux 下一切皆文件” 前言 问&#xff1a;fd 为什么默认从 3 开始&#xff0c;而不是…

深度学习-6-自编码器和去噪自动编码器和变分自编码器

参考keras基于自编码器的语音信号降噪 参考今天来介绍一下什么是去噪自动编码器(DenoisingAutoencoder) 1 keras实现自编码器图像去噪 自编码器是一种简单的人工神经网络 (ANN),经过训练可以学习输入数据的编码表示,这种无监督机制不需要标签。自编码器由两个神经网络组…

【练习】分治--归并排序

&#x1f3a5; 个人主页&#xff1a;Dikz12&#x1f525;个人专栏&#xff1a;算法(Java)&#x1f4d5;格言&#xff1a;吾愚多不敏&#xff0c;而愿加学欢迎大家&#x1f44d;点赞✍评论⭐收藏 目录 归并排序 代码实现 交易逆序对的总数 题目描述 ​编辑 题解 代码实…

前端Vue组件化实践:打造灵活可维护的地址管理组件

随着前端技术的不断演进&#xff0c;复杂度和开发难度也随之上升。传统的一体化开发模式使得每次小小的修改或功能增加都可能牵一发而动全身&#xff0c;严重影响了开发效率和维护成本。组件化开发作为一种解决方案&#xff0c;通过模块化、独立化的开发方式&#xff0c;实现了…

云计算【第一阶段(29)】远程访问及控制

一、ssh远程管理 1.1、ssh (secureshell)协议 是一种安全通道协议对通信数据进行了加密处理&#xff0c;用于远程管理功能SSH 协议对通信双方的数据传输进行了加密处理&#xff0c;其中包括用户登录时输入的用户口令&#xff0c;建立在应用层和传输层基础上的安全协议。SSH客…

SQL 多变关联使用子查询去重

不去重状态 select a.*,b.recon_amt from free_settlement_first aleft join free_settlement_second b on a.settlement_first_id b.settlement_first_id 有2条数据出现了重复 使用子查询去重 select a.*,b.recon_amt from free_settlement_first aleft join free_settlem…

谈谈软件交互设计

谈谈软件交互设计 交互设计的由来 交互设计(Interaction Design)这一概念,最初是由IDEO创始人之一Bill.Moggridge(莫格里奇)1984年在一次会议上提出。他设计了世界上第一台笔记本电脑Compass,并写作出版了在交互设计领域影响深远的《Designing Interactions》一书,被称…

Azcopy Sync同步Azure文件共享

Azcopy Sync同步Azure文件共享 一、工作原理二、安装 AzCopy在 Windows 上在 Linux 上 三、资源准备1. 创建源和目标 Azure 存储账户2. 创建源和目标文件共享3. 确定路径4. 生成源和目的存储账户的共享访问签名&#xff08;SAS&#xff09;令牌配置权限示例生成的 URL 四、Azco…

AI算法14-套索回归算法Lasso Regression | LR

套索回归算法概述 套索回归算法简介 在统计学和机器学习中&#xff0c;套索回归是一种同时进行特征选择和正则化&#xff08;数学&#xff09;的回归分析方法&#xff0c;旨在增强统计模型的预测准确性和可解释性&#xff0c; 正则化是一种回归的形式&#xff0c;它将系数估…

课程的概述

课程概述 课程类型 课程理论流派 制约课程开发的因素 课程设计的概念及两种模式 课程内容 课程评价 新课程改革理念

前一段时间比较火的刷网课平台源码,带数据库和教程

前一段时间比较火的刷网课平台源码&#xff0c;带数据库和教程。 好在疫情已经结束了&#xff0c;希望今后世上再无网课。 这个代码免费提供给大家学习开发用吧&#xff0c;作为一个php的入门学习案例用用还可以。 使用办法 网站根目录解压 打开nginx.htaccess文件&#x…

社交App iOS审核中的4.3问题:深入分析与解决策略

社交App审核中的4.3问题&#xff1a;深入分析与解决策略 在iOS应用开发和审核过程中&#xff0c;开发者经常会遇到苹果审核4.3问题。这一问题往往涉及应用的设计和内容重复性&#xff0c;导致应用被拒绝上架。为了帮助开发者更好地理解和解决这一问题&#xff0c;本文将对4.3问…

FPGA设计之跨时钟域(CDC)设计篇(1)----亚稳态到底是什么?

1、什么是亚稳态? 在数字电路中,如果数据传输时不满足触发器FF的建立时间要求Tsu和保持时间要求Th,就可能产生亚稳态(Metastability),此时触发器的输出端(Q端)在有效时钟沿之后比较长的一段时间都会处于不确定的状态(在0和1之间振荡),而不是等于数据输入端(D端)的…

集训 Day 3 总结 虚树 + dfs tree + 基环树

虚树 虚树&#xff0c;顾名思义是 只关注原树上的某些 关键点&#xff0c;在保留原树祖孙关系的前提下建出的一棵边数、点数大大减少的树 适用于优化某些在整棵树上进行 d p dp dp、 d f s dfs dfs 的问题 通常是题目中出现多次询问&#xff0c;每次给出树上的一些关键点&a…

taro小程序terser-webpack-plugin插件不生效(vue2版本)

背景 最近在做公司内部的小程序脚手架&#xff0c;为了兼容老项目和旧项目&#xff0c;做了vue2taro,vue3taro两个模板&#xff0c;发现terser-webpack-plugin在vue2和vue3中的使用方式并不相同&#xff0c;同样的配置在vue3webpack5中生效&#xff0c;但是在vue2webpack4中就…