linux_进程周边知识——理解冯诺依曼体系结构

        前言: 本篇内容是为了让友友们较好地理解进程的概念, 而在真正了解进行概念之前, 要先了解一下冯诺依曼体系结构。 所以博主会先对冯诺伊曼体系结构进行解释, 然后再讲解进程的概念。 

        ps: 本篇内容适合了解一些linux指令地友友们进行观看

目录

冯诺依曼体系结构硬件

冯诺依曼的存储

存储等级 

存储器的作用

冯诺依曼的数据流动  

程序的运行

数据的打印

网络交互数据的流动


冯诺依曼体系结构硬件

下面是整个冯诺依曼体系结构

        储存器: 友友们第一眼看到储存器, 可能认为储存器就是我们电脑上面的内存、磁盘、u盘这种存储设备, 但是其实存储器其实只是电脑上面的内存。 而磁盘, u盘这种其实是输入输出设备。 

        输入输出设备:计算机是为了帮助人们进行计算的, 而我们要进行某个数据地计算, 就要能够将这个数据写入计算机的内存中, 然后计算机还能将结果反馈给我们。但是我们的计算机只能够认识0101这种二进制文字, 而我们人是不能够识别这些文字的。 所以我们就很难直接访问内存, 必须要借助一些输入输出设备。 通过这些设备将我们人的文字转化为二进制文字输入给计算机,然后通过输出设备将这些二进制文字转化为人的文字反馈给我们。 

        常见的输入设备有:键盘、鼠标、磁盘、u盘、网卡、摄像头、话筒等等

        常见的输出设备有: 显示器、播放器硬件、磁盘、网卡等等

        通过上面的输入输出设备我们可以发现, 有的硬件是纯的输入设备, 有的硬件是纯的输出设备。有的硬件既是输入设备, 又是输出设备。 

        比如说网卡和磁盘, 我们有时候需要从磁盘中读取数据进行计算, 那么它就是输入设备。 当我们需要从磁盘中输出数据进行计算, 那么他就是输出设备;又比如网卡, 我们需要从网络中获取资源时, 那么网卡就是输入设备。 我们需要在网络中发送资源时,那么网卡就是输出设备。  

        运算器:运算器是计算机中对数据进行计算的, 计算分为两种——算术运算和逻辑运算。 

        控制器:对于计算机来说, 什么时候将输入设备的数据放入到存储器。 什么时候将存储器的数据放到运算器。 什么时候将运算器的数据取出再放回到存储器中, 是由控制器控制的。

        注: 上面的输入输出设备被称为外设。 上面的运算器和控制器也就是中央处理器被称为cpu。 

        我们也要知道, 计算机的本质就是一堆硬件的集合, 并且这些硬件之间有协同的能力。 

        硬件也就是组件, 组件和组件之间需要使用某种方式传递信号, 当代计算机的组成, 都是由冯诺依曼体系结构构成的。 

        

        上面那些硬件——存储器、输入输出设备、运算器、控制器等都是独立的个体, 但是各个硬件单元必须要用“线”连接起来, 这些线叫做总线。 总线分为两类——IO总线、系统总线。

        其中cpu和存储器, 也就是和内存中进行交互的叫做系统总线。 外设和存储器交互的叫做IO总线。

冯诺依曼的存储

注意, 是存储, 不是存储器。

存储等级 

     首先这里要对上面这张图进行解释。 对于计算机整个结构来说, 一共有这么多层存储结构。 第一层是寄存器, 然后是一级存储,二级存储, 三级存储, 内存以及磁盘。 这些存储结构, 从上到下容量越来越大, 速度越来越慢, 价格越来越低。 

       对于寄存器和内存以及磁盘的存储速度来说: 寄存器的速度可以达到纳秒级别, 然后内存的速度可以达到微妙级别, 外存的速度可以达到毫秒级别。 也就是说, 三个存储结构的相差级次达到了10的三次方。       

存储器的作用

        那么进入主题, 我们思考一下对于冯诺依曼体系结构来说, 不能将存储器直接去掉。 让输入设备直接通向中央处理器再前往输出设备, 这是为什么?答案是因为输入输出设备的速度和cpu的差距太大了。下面对细节进行解释: 

        首先木桶原理告诉我们,木桶的存水量由最短的那个短板所决定。 那么对于计算机来说, 寄存器的存储速度最快。而磁盘也就是输入输出设备的存储速度最慢。那么也就是说, 磁盘决定了整个冯诺依曼体系的运行速率。 那么去掉存储器也就是内存后, 整个计算机体系的运行速率仍然由输入和输出设备进行决定。 那么去掉存储器的意义就不会太大。

        那么友友们就会疑惑了, 那么既然去掉存储器和不去掉存储器。 根据木桶效应计算机体系的效率都是由输入输出设备进行决定, 那么为什么还要加存储器增加计算机的成本呢?

        这个问题很重要很重要, 为什么? 原因就是“缓存原理”——这个词不是官方, 这个词是博主为了好理解, 自己说的。 佬们笑一笑就好。

        首先我们要知道, 内存的存储空间一般都在1g到32g(目前一般的电脑都在16g, 有可能有的电脑更多, 而且也很少有1, 2g的电脑了)。 那么我们的内存就可以在cpu没有工作的时候, 先将输入输出设备的数据预缓存到自己里面。等到cpu开始工作的时候, 就将这些预先缓存好的数据再放到cpu中解析与处理。 这个时候内存还能基于预缓存输入输出设备输送过来的其他数据。 这就是IO, 系统两条总线并行。 可以大大加快整个系统的工作效率。  

        那么, 有的友友可能又会问。 博主, 那既然cpu里面的存储那么快, 为什么不将计算机的内存, 磁盘, 这些存储设备都换成cpu这样的呢?

        对于这个问题, 首先我们要重新知道, cpu的存储空间, 其实就是寄存器。 那么我们知道, 寄存器的造价非常昂贵, 可使用的内存非常小。 要想造出一台几百个g寄存器的计算机, 成本非常高。 一般群众用不起——要知道, 计算机造出来, 就是要给群众使用的, 计算机之所以能发展的这么好, 就是因为它还算便宜。 如果一台计算机几十几百万, 那么没有多少人会用。 当然有人会用, 但是还是在少数。 所以, 现在有一套成本低, 效率不错的计算机体系结构——冯诺依曼, 为什么不用。 所以, 冯诺依曼, 我们的现在的计算机还在使用它。 

冯诺依曼的数据流动  

程序的运行

      那么, 关于为什么不去掉存储器的问题我们想清楚后, 再来思考一个问题:一个程序要运行, 为什么要加载到内存中呢?(这里可能有点友友不知道程序要运行必须加载到内存中, 这里记住就可以

       那么, 我们就要知道, 对于内存来说, 内存是一个断电易丢失数据的存储空间。 那么一个程序我们能够长久地保存在计算机中, 那么它势必是存储在磁盘中。也就是说, 程序是放到输入设备中的, 而cpu只从内存中拿数据。 所以, 一个程序想要被cpu计算, 那么这个程序就要被放到内存中。 所以, 程序在运行之前, 一定要先将程序缓存到内存中, 然后cpu再从内存中拿到数据。 这个过程, 是由冯诺依曼体系决定的。所以, 软件在执行的时候, 必须遵守硬件的规则。 硬件就是底层和下限, 软件就是上层和天花板。 

数据的打印

        第二个问题:为什么对于打印一行的数据来说, 默认的数据, 是可能被缓存起来的?在哪里缓存呢?

        首先, 数据是默认缓存到内存的某个区域, 如果这时缓存区没有满或者没有换行符, 那么这个缓存区就不会刷新, 只有刷新后, 那么才会将缓冲区的数据全都打印出来。 这就是为什么我们经常看到一行一行的打印数据。 

网络交互数据的流动

        第三个问题, 我们在网络上发送文件, 发送消息聊天的时候。 数据是怎么流动的呢?

现在我们有张三和李四两个人, 两个都登录了qq, 并且两个人还在聊天。

        那么假如张三给李四发了一条消息。 首先, 张三从键盘上输入, 然后输入的内容进入到了存储器之中进行缓存, 然后这些内容有传送到了cpu之中进行计算, 然后返回到内存之中, 又从内存之中输送到张三的显卡之中。 李四的电脑上面的网卡接收到张三网卡中传送过来的信息后, 将数据缓存到内存中, 然后放到cpu中进行计算放回内存, 最后从内存取出放到李四的显示屏上。 这就是聊天时的数据流动。 

        那么发送文件是类似的。 假如张三给李四发了一个文件, 首先, 张三的电脑要从磁盘里拿到这个文件放到存储器中进行缓存, 然后内存中的文件放到cpu中进行解析和计算。 完成之后放回存储区, 然后输送到网卡中, 进而输送到李四的网卡中。 那么李四的网卡接受到文件之后就将文件放到存储区, 然后经过cpu的解析与计算放回存储区, 再从存储区输送到李四电脑的磁盘中。 这就是传送文件时的流动。 

综上, 我们其实可以发现, 在冯诺依曼体系中的数据传送, 归根结底就是就是两台冯诺依曼依靠输入输出设备, 网卡等硬件,将数据进行传送的过程。 

        

--------------------------------------------------

以上, 就是本节全部内容, 下面是本节的笔记

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/797507.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【redis操作语句】

1.数据库操作 redis默认有16个数据库,编号为0~15,且默认访问0号数据库 获取当前键值对数量:先set创建一个键值对,再用dbsize获取,flushdb清空再获取。 127.0.0.1:6379> set k1 v1 OK 127.0.0.1:6379> dbsize (integer) 1 127.0.0.1:…

opencv 中如何通过欧式距离估算实际距离(厘米)

1:这个方法个人测试觉得是正确的,误差较小,目前满足我当前的需求,如果方法不对,请大家评论,完善。 2:确保拍摄的参照物是垂直的,如果不垂直,就会有误差,不垂…

基于SpringBoot+Hadoop+python的物品租赁系统(带1w+文档)

基于SpringBootHadooppython的物品租赁系统(带1w文档) 基于SpringBootHadooppython的物品租赁系统(带1w文档) 物品租赁系统是电子、信息技术相结合,是一种必然的发展趋势。以互联网为基础,以服务于广大用户为目的,发展整体优势,扩…

Flutter实现局部刷新的几种方式

目录 前言 1.局部刷新的重要性 1.概念 2.重要性 2.局部刷新实现的几种方式 1.使用setState方法进行局部刷新 2.使用StatefulWidget和InheritedWidget局部刷新UI 3.ValueNotifier和ValueListenableBuilder 4.StreamBuilder 5.Provider 6.GetX 7.使用GlobalKey 前言 …

游戏三倍补帧工具 Lossless Scaling v2.9.0

运行时请将游戏窗口化或全屏 比如你的显示器是144hz 把游戏限制帧率到48帧后开启三倍补帧 允许撕裂和垂直同步一起来延迟更低 72,48,36,分别对应1/2,1/3,1/4,性能够的话(补帧后满144fps)就优先锁72fps&a…

自动驾驶中的人机互相接管问题讨论

一、背景 人机接管(human takeover)是指在自动驾驶过程中,当系统遇到超出其处理能力或预设安全阈值的情况时,将控制权交还给驾驶员的过程。这一环节的设计直接关系到自动驾驶技术的实用性与安全性,是目前研究和实践中…

深入解析双向链表与单向链表的区别:示例详解

文章目录 一、单向链表与双向链表的定义及结构二、单向链表与双向链表的区别示例插入操作删除操作 三、完整示例四、总结 链表是一种灵活的数据结构,它通过指针连接一系列节点,实现了动态数组的特性。在众多链表类型中,单向链表和双向链表是最…

vue2学习笔记2-老规矩,从Hello World开始,了解Vue实例和模板

想要实现的效果&#xff1a;在页面上展示“Hello&#xff0c;World”字符串 1、准备一个【容器】div 想要把“Hello&#xff0c;World”放置在页面上&#xff0c;首先需要准备一个HTML的块级元素div&#xff0c;来承接内容。所以&#xff0c;我们先在<body>中定义<di…

Android12 MultiMedia框架之GenericSource extractor

前面两节学习到了各种Source的创建和extractor service的启动&#xff0c;本节将以本地播放为例记录下GenericSource是如何创建一个extractor的。extractor是在PrepareAsync()方法中被创建出来的&#xff0c;为了不过多赘述&#xff0c;我们直接从GenericSource的onPrepareAsyn…

《昇思25天学习打卡营第17天|K近邻算法实现红酒聚类》

K近邻算法原理介绍 K近邻算法&#xff08;K-Nearest-Neighbor, KNN&#xff09;是一种用于分类和回归的非参数统计方法&#xff0c;最初由 Cover和Hart于1968年提出是机器学习最基础的算法之一。它正是基于以上思想&#xff1a;要确定一个样本的类别&#xff0c;可以计算它与所…

springboot在线教育平台-计算机毕业设计源码68562

摘要 在数字化时代&#xff0c;随着信息技术的飞速发展&#xff0c;在线教育已成为教育领域的重要趋势。为了满足广大学习者对于灵活、高效学习方式的需求&#xff0c;基于Spring Boot的在线教育平台应运而生。Spring Boot以其快速开发、简便部署以及良好的可扩展性&#xff0c…

TypeError: Rule.__init__() got an unexpected keyword argument ‘method‘报错的解法

报错如图&#xff1a; 原代码&#xff1a; app.route(/query,method[get,post]) 解决办法很简单&#xff0c;method后加s​​​​​​​ app.route(/query,methods[get,post]) 重新执行代码&#xff0c;不报错了

C++ QT开发 学习笔记(1)

C QT开发 学习笔记(1) 考试系统 创建项目 新建Qt桌面应用程序&#xff0c;项目名&#xff1a;ExamSys。 类信息&#xff1a;类名LoginDialog继承自QDialog &#xff08;1&#xff09; ExamSys.pro 工程文件&#xff0c;包含当前工程的相关信息。 QDialog 是 Qt 框架中用…

大数据基础:Hadoop之MapReduce重点架构原理

文章目录 Hadoop之MapReduce重点架构原理 一、MapReduce概念 二、MapReduce 编程思想 2.1、Map阶段 2.2、Reduce阶段 三、MapReduce处理数据流程 四、MapReduce Shuffle 五、MapReduce注意点 六、MapReduce的三次排序 Hadoop之MapReduce重点架构原理 一、MapReduce概…

JavaScript中的面向对象编程

OPP在JavaScript的表现方式&#xff1a;原型 传统的OPP&#xff1a;类 ● 对象&#xff08;实例&#xff09;由类实例化&#xff0c;类的功能类似于蓝图&#xff0c;通过蓝图来实现建筑&#xff08;实例&#xff09; ● 行为&#xff08;方法&#xff09;从类复制到所有实例 …

【2-1:RPC设计】

RPC 1. 基础1.1 定义&特点1.2 具体实现框架1.3 应用场景2. RPC的关键技术点&一次调用rpc流程2.1 RPC流程流程两个网络模块如何连接的呢?其它特性RPC优势2.2 序列化技术序列化方式PRC如何选择序列化框架考虑因素2.3 应用层的通信协议-http2.3.1 基础概念大多数RPC大多自…

并查集——AcWing 239. 奇偶游戏

目录 并查集 定义 运用情况 注意事项 解题思路 AcWing 239. 奇偶游戏 题目描述 运行代码 代码思路 改进思路 并查集 定义 并查集&#xff08;Disjoint Set Union&#xff0c;简称DSU&#xff09;&#xff0c;是一种树形的数据结构&#xff0c;常用于处理一些不交集…

jvm 07 GC算法,内存池

01 垃圾判断算法 1.1引用计数算法 最简单的垃圾判断算法。在对象中添加一个属性用于标记对象被引用的次数&#xff0c;每多一个其他对象引用&#xff0c;计数1&#xff0c; 当引用失效时&#xff0c;计数-1&#xff0c;如果计数0&#xff0c;表示没有其他对象引用&#xff0c;…

一文详解DDL同步及其应用场景

目录 一、什么是DDL&#xff1f; 二、什么是DDL同步&#xff1f; 三、DDL同步的痛点 1、缺少自动DDL同步机制 2、缺少DDL变更监测预警 四、解决方案 五、应用场景及案例 案例一 案例二 案例三 在现代数据管理中&#xff0c;数据库的结构变更频繁且不可避免&#xff0c;特别是在…

计算机视觉之Vision Transformer图像分类

Vision Transformer&#xff08;ViT&#xff09;简介 自注意结构模型的发展&#xff0c;特别是Transformer模型的出现&#xff0c;极大推动了自然语言处理模型的发展。Transformers的计算效率和可扩展性使其能够训练具有超过100B参数的规模空前的模型。ViT是自然语言处理和计算…