如何利用大模型提高金融合规场景的工作效率?

金融是强监管行业,遵守法律法规、行业标准和内部政策是金融行业的基本要求。在强监管合规环境下,金融机构需要降低合规风险并提升服务质量。

人工审核效率低、成本高,且存在主观性导致的风险。过去,金融机构基于规则和NLP模型构建智能审核系统,提高业务领域的审核效率和准确率,降低人力成本。但传统智能审核系统的智能化程度有限,局限于规则和模板,存在合规知识点更新不及时、知识库维护成本高、知识检索结果不准确等应用难题。

随着大模型技术的创新,金融机构探索大模型在合规领域的应用,升级智能审核系统,当前主要的应用场景包括合规知识库构建、合规知识智能问答、合规报告生成等。

沙丘智库长期跟踪调研大模型技术的发展,旨在帮助企业快速了解大模型最新、最全面的落地情况。沙丘智库通过研究招商银行、平安集团、广发证券、山西证券、华农保险等金融机构合规场景的大模型应用实践,旨在为其他金融机构提供参考。

案例1:招商银行智能审核系统建设实践

传统智能审核系统存在两个局限性,第一,高度依赖于业务人员梳理审核知识和审核流程,导致场景扩展存在局限性;第二,在面向小样本、相对复杂的语义推理场景时,传统模型的能力有限。在大模型出现后,招商银行探索基于大模型的审核方案,解决流程分为知识入库和知识审核两个模块:

• 知识入库: 招商银行尝试用大模型拆解内外规、流程操作指引等,将知识化、专业化的规章或操作范式转化成机器可以理解的审核知识点;

• 知识审核: 将待审核文档上传后,基于审核知识库和待审核知识进行关联检索,将关联到的待审核文档的相关审核知识点给大模型,大模型根据知识和指引给出推理。

图片

案例2:平安基于多模态大模型的智能品控实践

平安利用大模型多模态技术实现多模态数据自动收集,将品控质检标准通过统一流程和方案落地,实现全方位、全旅程、高时效、准实时的质量品控,覆盖业务需要品控的场景:

• 自动总结: 针对挂号、住院、陪诊等服务,在首次致电收集需求、出号提醒等电话沟通场景,根据服务流程要求(客户需求、待办事项等),自动解析、生成结构化总结,提升后续服务环节的服务质量。

• 语音品控: 针对挂号、住院、陪诊等服务,将用户提交的需求、服务过程中的通话记录、服务人员提交的服务材料进行三方对比,自动识别异常点,提醒服务人员、品控人员进行修正、管理。

• 图文品控: 针对陪诊、康复护理等服务,将服务人员提交的关键材料(接送车安排、探视礼品、康复指导书等),与用户需求、服务标准进行自动对比,识别异常,提醒服务人员、品控人员进行修正、管理。

案例3:广发证券基于金融大模型的智能化核查实践

投行文档复杂多样,既有结构相对固定的制式文档,也有无固定格式的非制式文档。传统的智能核查主要应用各种专门的NLP模型和规则实现业务功能,存在训练专门模型工作量大重复劳动多、语义推理能力弱、处理未见数据的泛化能力弱等问题。

广发证券运用金融大模型技术,建设金融大模型应用基础架构服务,包括语料工程、提示工程、质控工程。同时,建设三个金融大模型应用场景,文档智能抽取、智能生成、智能核查,打造基于金融大模型的投行文档抽取、生成、核查一体化解决方案。

案例4:山西证券合规知识问答助手

山西证券内部已建立合规宝典(合规知识库)用于员工开展合规作业,将本地知识库变成问答应用。

通过结合人工智能大模型,进行证券合规知识训练后,可为证券从业人员提供一个合规方面的智能问答机器人,在提升从业人员合规知识储备的同时节省大量文档检索时间,提升合规问答的精度和准确度,大幅提高工作效率,助力证券行业的合规智能化。

案例5:华农保险大模型应用场景

员工从海量的监管制度、司法判决、公司内部规章制度等材料中难以准确获取风控相关的信息,华农保险借助大模型的能力形成自有的知识库,形成审计合规知识库,员工可以通过提问的方式查询制度或案例,了解到其操作是否合规,从源头预防风险事件的发生。

图片

以前用户网上搜索监管制度、找到需要的答案需时约5-10分钟,现在通过知识库问答获得答案需时约1-2分钟。

如何学习AI大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/796093.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

打卡第10天-----栈与队列

希望今年可是实现两份工作的无缝衔接,成功完成一次跳槽,最好不要成为无业游民。希望上帝成就我向他所祈求的,哈哈哈~ 一、栈与队列理论基础 如下图所示,栈是stack,后进先出,类比到我们平常做升降电梯,在电梯口的后上去,但是在下去的时候都是先出来,这很好理解,没什…

【Jfrog Artifactory】配置邮件服务器

教程使用QQ邮箱 配置路径是: http://IP:8082/ui/admin/configuration/mail 进入到Mail Server,然后按照格式填入: Host :smtp.qq.com 【发送服务器】 Port:587 【我的环境465无法发送成功】 Username:QQ邮…

find 查找与删除

项目里存在着以前很多的用cmake 生成的Makefile,由于本人不喜欢cmake,所以在部分目录下自己写了 Makefile,之前存在的很多的 Makefile 需要删除,但不知道在哪些目录下,所以有了以下的脚本: #!/bin/bash if…

使用Apache服务部署静态网站

前言:本博客仅作记录学习使用,部分图片出自网络,如有侵犯您的权益,请联系删除 目录 一、网站服务程序 ​二、配置服务文件参数 ​三、SELinux安全子系统 四、个人用户主页功能 ​五、虚拟网站主机功能 六、Apache的访问控制…

[Labview] 表格单元格外边框 二维图片叠加绘图

最终效果如下所示 转行做Labview都没到三个月,主程居然让我做这么复杂的功能,真是看得起我/(ㄒoㄒ)/~~ 思路大致分为两步 1、确定每个框体的左上/右下单元格位置,转换为表格表格坐标并在二维图片上绘制生成; 2、为二维图片添加…

Facebook社交平台的未来发展趋势分析

随着科技和社交需求的不断演变,Facebook作为全球最大的社交平台之一,其未来发展的趋势备受关注。从技术创新到社会影响,Facebook正在经历着前所未有的变化和挑战。本文将探讨Facebook未来发展的几个关键趋势,并分析其可能的影响和…

通过FallbackFactory接口实现降级逻辑

触发限流或熔断后的请求不一定要直接报错,也可以返回一些默认数据或者友好提示,用户体验会更好。 给FeignClient编写失败后的降级逻辑有两种方式: 方式一:FallbackClass,无法对远程调用的异常做处理方式二&#xff1a…

LaneNet(1):网络结构详解

前言 这是一种端到端的车道线检测方法,包括LanNetH-Net两种网络模型。 LanNet是一种多任务模型,它将实例分割任务分解为“语义分割”和“像素矢量表示”,然后对这两个分支的结果进行聚类,得到实例分割的结果。 H-Net是一个小型…

【STM32CubeMX安装教程】

【STM32CubeMX安装教程】 1. 前言2. 下载软件3. 安装配置4. 测试5. 小结 1. 前言 STM32CubeMX是一款图形化工具,可以非常轻松地配置STM32微控制器和微处理器,以及为Arm Cortex-M内核生成相应的初始化C代码,或为Arm Cortex-A内核生成部分Linu…

suricata7 rule加载(三)加载options

suricata7.0.5 加载options (msg:“HTTP Request Example”; flow:established,to_server; http.method; content:“POST”; http.uri; content:“query.php”; bsize:>9; http.protocol; content:“HTTP/1.1”; bsize:8; http.host; content:“360”; bsize:>3; class…

Java毕业设计 基于SSM vue电影订票系统小程序 微信小程序

Java毕业设计 基于SSM vue电影订票系统小程序 微信小程序 SSM 电影订票系统小程序 功能介绍 用户 登录 注册 忘记密码 首页 图片轮播 电影信息 电影详情 评论 收藏 预订 电影资讯 资讯详情 用户信息修改 电影评价 我的收藏管理 用户充值 在线客服 我的订单 管理员 登录 个人…

【微信小程序知识点】自定义构建npm

在实际开发中,随着项目的功能越来越多,项目越来越复杂,文件目录也变得很繁琐,为了方便进行项目的开发,开发人员通常会对目录结构进行优化调整,例如:将小程序源码放到miniprogram目录下。 &…

基于B站视频评论的文本分析,采用包括文本聚类分析、LDA主题分析、网络语义分析

研究主题 本研究旨在通过对B站视频评论数据进行文本分析,揭示用户评论的主题、情感倾向和语义结构,助力商业决策。主要技术手段包括Python爬虫、LDA主题分析、聚类分析和语义网络分析。首先,利用Python爬虫采集大量评论数据并进行预处理。运…

通用详情页的打造

背景介绍 大家都知道,详情页承载了站内的核心流量。它的量级到底有多大呢? 我们来看一下,日均播放次数数亿次,这么大的流量,其重要程度可想而知。 在这样一个页面,每一个功能都是大量业务的汇总点。 作为…

Mac M1安装配置Hadoop+Flink SQL环境

Flink 1.18.1 Hadoop 3.4.0 一、准备工作 系统:Mac M1 (MacOS Sonoma 14.3.1) JDK:jdk1.8.0_381 (注意:尽量一定要用JDK8,少用高版本) Scala:2.12 JDK安装在本机的/opt/jdk1.8.0_381.jdk/C…

认识R155法规(UN Regulation No. 155)-MUNIK

背景 Background 随着汽车新四化(电动化、智能化、网联化、共享化)政策的提出,大数据和人工智能等技术的发展,以及软件驱动汽车、舱驾一体、行泊一体等新型架构概念的提出,车内外智能传感器采集的大量数据&#xff08…

数据结构4.0——串的定义和基本操作

串的定义(逻辑结构) 串,即字符串(String)是由零个或多个字符组成的有序数列。 一般记为Sa1a2....an(n>0) 其中,S是串名,单引号括起来的字符序列是串的值;ai可以是字母、数字或其他字符;串中字符的个数n称为串的长度。n0时的…

观察者模式的实现

引言:观察者模式——程序中的“通信兵” 在现代战争中,通信是胜利的关键。信息力以网络、数据、算法、算力等为底层支撑,在现代战争中不断推动感知、决策、指控等各环节产生量变与质变。在软件架构中,观察者模式扮演着类似的角色…

SpringBoot实战:枚举类型转换问题

1.在controller层中完成service注入 2.调用业务层进行查询所有房间类型标签 Tag(name "标签管理") RestController RequestMapping("/admin/label") public class LabelController {Autowiredprivate LabelInfoService service;Operation(summary &qu…

dm-verity hashtree的结构

参考了:实现 dm-verity | Android Open Source Project (google.cn)。基于这个添加了一层原始数据,便于理解。 结构图如下: 对hashtree结构图的解释: dev data:表示我们的分区数据。这里我们将dev data按照指定的大…