计算机竞赛 LSTM的预测算法 - 股票预测 天气预测 房价预测

0 简介

今天学长向大家介绍LSTM基础

基于LSTM的预测算法 - 股票预测 天气预测 房价预测

这是一个较为新颖的竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 基于 Keras 用 LSTM 网络做时间序列预测

时间序列预测是一类比较困难的预测问题。

与常见的回归预测模型不同,输入变量之间的“序列依赖性”为时间序列问题增加了复杂度。

一种能够专门用来处理序列依赖性的神经网络被称为 递归神经网络(Recurrent Neural
Networks、RNN)。因其训练时的出色性能,长短记忆网络(Long Short-Term Memory
Network,LSTM)是深度学习中广泛使用的一种递归神经网络(RNN)。

在本篇文章中,将介绍如何在 R 中使用 keras 深度学习包构建 LSTM 神经网络模型实现时间序列预测。

  • 如何为基于回归、窗口法和时间步的时间序列预测问题建立对应的 LSTM 网络。
  • 对于非常长的序列,如何在构建 LSTM 网络和用 LSTM 网络做预测时保持网络关于序列的状态(记忆)。

2 长短记忆网络

长短记忆网络,或 LSTM 网络,是一种递归神经网络(RNN),通过训练时在“时间上的反向传播”来克服梯度消失问题。

LSTM 网络可以用来构建大规模的递归神经网络来处理机器学习中复杂的序列问题,并取得不错的结果。

除了神经元之外,LSTM 网络在神经网络层级(layers)之间还存在记忆模块。

一个记忆模块具有特殊的构成,使它比传统的神经元更“聪明”,并且可以对序列中的前后部分产生记忆。模块具有不同的“门”(gates)来控制模块的状态和输出。一旦接收并处理一个输入序列,模块中的各个门便使用
S 型的激活单元来控制自身是否被激活,从而改变模块状态并向模块添加信息(记忆)。

一个激活单元有三种门:

  • 遗忘门(Forget Gate):决定抛弃哪些信息。
  • 输入门(Input Gate):决定输入中的哪些值用来更新记忆状态。
  • 输出门(Output Gate):根据输入和记忆状态决定输出的值。

每一个激活单元就像是一个迷你状态机,单元中各个门的权重通过训练获得。

3 LSTM 网络结构和原理

long short term memory,即我们所称呼的LSTM,是为了解决长期以来问题而专门设计出来的,所有的RNN都具有一种重复

在这里插入图片描述

LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。

在这里插入图片描述

不必担心这里的细节。我们会一步一步地剖析 LSTM 解析图。现在,我们先来熟悉一下图中使用的各种元素的图标。

在这里插入图片描述

在上面的图例中,每一条黑线传输着一整个向量,从一个节点的输出到其他节点的输入。粉色的圈代表 pointwise
的操作,诸如向量的和,而黄色的矩阵就是学习到的神经网络层。合在一起的线表示向量的连接,分开的线表示内容被复制,然后分发到不同的位置。

3.1 LSTM核心思想

LSTM的关键在于细胞的状态整个(如下图),和穿过细胞的那条水平线。

细胞状态类似于传送带。直接在整个链上运行,只有一些少量的线性交互。信息在上面流传保持不变会很容易。

在这里插入图片描述
门可以实现选择性地让信息通过,主要是通过一个 sigmoid 的神经层 和一个逐点相乘的操作来实现的。

在这里插入图片描述
sigmoid 层输出(是一个向量)的每个元素都是一个在 0 和 1 之间的实数,表示让对应信息通过的权重(或者占比)。比如, 0
表示“不让任何信息通过”, 1 表示“让所有信息通过”。

LSTM通过三个这样的本结构来实现信息的保护和控制。这三个门分别输入门、遗忘门和输出门。

3.2 遗忘门

在我们 LSTM 中的第一步是决定我们会从细胞状态中丢弃什么信息。这个决定通过一个称为忘记门层完成。该门会读取和,输出一个在 0到
1之间的数值给每个在细胞状态中的数字。1 表示“完全保留”,0 表示“完全舍弃”。

让我们回到语言模型的例子中来基于已经看到的预测下一个词。在这个问题中,细胞状态可能包含当前主语的性别,因此正确的代词可以被选择出来。当我们看到新的主语,我们希望忘记旧的主语。

在这里插入图片描述
其中

在这里插入图片描述

表示的是 上一时刻隐含层的 输出,

在这里插入图片描述

表示的是当前细胞的输入。σ表示sigmod函数。

3.3 输入门

下一步是决定让多少新的信息加入到 cell 状态 中来。实现这个需要包括两个步骤:首先,一个叫做“input gate layer ”的 sigmoid
层决定哪些信息需要更新;一个 tanh 层生成一个向量,也就是备选的用来更新的内容。在下一步,我们把这两部分联合起来,对 cell 的状态进行一个更新。

在这里插入图片描述

3.4 输出门

最终,我们需要确定输出什么值。这个输出将会基于我们的细胞状态,但是也是一个过滤后的版本。首先,我们运行一个 sigmoid
层来确定细胞状态的哪个部分将输出出去。接着,我们把细胞状态通过 tanh 进行处理(得到一个在 -1 到 1 之间的值)并将它和 sigmoid
门的输出相乘,最终我们仅仅会输出我们确定输出的那部分。

在语言模型的例子中,因为他就看到了一个代词,可能需要输出与一个动词相关的信息。例如,可能输出是否代词是单数还是负数,这样如果是动词的话,我们也知道动词需要进行的词形变化。

在这里插入图片描述

4 基于LSTM的天气预测

4.1 数据集

在这里插入图片描述

如上所示,每10分钟记录一次观测值,一个小时内有6个观测值,一天有144(6x24)个观测值。

给定一个特定的时间,假设要预测未来6小时的温度。为了做出此预测,选择使用5天的观察时间。因此,创建一个包含最后720(5x144)个观测值的窗口以训练模型。

下面的函数返回上述时间窗以供模型训练。参数 history_size 是过去信息的滑动窗口大小。target_size
是模型需要学习预测的未来时间步,也作为需要被预测的标签。

下面使用数据的前300,000行当做训练数据集,其余的作为验证数据集。总计约2100天的训练数据。

4.2 预测示例

多步骤预测模型中,给定过去的采样值,预测未来一系列的值。对于多步骤模型,训练数据再次包括每小时采样的过去五天的记录。但是,这里的模型需要学习预测接下来12小时的温度。由于每10分钟采样一次数据,因此输出为72个预测值。

    
    future_target = 72
    x_train_multi, y_train_multi = multivariate_data(dataset, dataset[:, 1], 0,
                                                     TRAIN_SPLIT, past_history,
                                                     future_target, STEP)
    x_val_multi, y_val_multi = multivariate_data(dataset, dataset[:, 1],
                                                 TRAIN_SPLIT, None, past_history,
                                                 future_target, STEP)

划分数据集

    
​    train_data_multi = tf.data.Dataset.from_tensor_slices((x_train_multi, y_train_multi))
​    train_data_multi = train_data_multi.cache().shuffle(BUFFER_SIZE).batch(BATCH_SIZE).repeat()
​    

    val_data_multi = tf.data.Dataset.from_tensor_slices((x_val_multi, y_val_multi))
    val_data_multi = val_data_multi.batch(BATCH_SIZE).repeat()


  

绘制样本点数据

def multi_step_plot(history, true_future, prediction):
​        plt.figure(figsize=(12, 6))
​        num_in = create_time_steps(len(history))
​        num_out = len(true_future)
​    

        plt.plot(num_in, np.array(history[:, 1]), label='History')
        plt.plot(np.arange(num_out)/STEP, np.array(true_future), 'bo',
               label='True Future')
        if prediction.any():
            plt.plot(np.arange(num_out)/STEP, np.array(prediction), 'ro',
                     label='Predicted Future')
        plt.legend(loc='upper left')
        plt.show()
    for x, y in train_data_multi.take(1):
      multi_step_plot(x[0], y[0], np.array([0]))

在这里插入图片描述

此处的任务比先前的任务复杂一些,因此该模型现在由两个LSTM层组成。最后,由于需要预测之后12个小时的数据,因此Dense层将输出为72。

    
​    multi_step_model = tf.keras.models.Sequential()
​    multi_step_model.add(tf.keras.layers.LSTM(32,
​                                              return_sequences=True,
​                                              input_shape=x_train_multi.shape[-2:]))
​    multi_step_model.add(tf.keras.layers.LSTM(16, activation='relu'))
​    multi_step_model.add(tf.keras.layers.Dense(72))
​    

    multi_step_model.compile(optimizer=tf.keras.optimizers.RMSprop(clipvalue=1.0), loss='mae')

训练

    
    multi_step_history = multi_step_model.fit(train_data_multi, epochs=EPOCHS,
                                              steps_per_epoch=EVALUATION_INTERVAL,
                                              validation_data=val_data_multi,
                                              validation_steps=50)

在这里插入图片描述

在这里插入图片描述

5 基于LSTM的股票价格预测

5.1 数据集

股票数据总共有九个维度,分别是

在这里插入图片描述

5.2 实现代码

    import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import tensorflow as tf
    plt.rcParams['font.sans-serif']=['SimHei']#显示中文
    plt.rcParams['axes.unicode_minus']=False#显示负号


def load_data():
test_x_batch = np.load(r’test_x_batch.npy’,allow_pickle=True)
test_y_batch = np.load(r’test_y_batch.npy’,allow_pickle=True)
return (test_x_batch,test_y_batch)

#定义lstm单元
def lstm_cell(units):
    cell = tf.contrib.rnn.BasicLSTMCell(num_units=units,forget_bias=0.0)#activation默认为tanh
    return cell

#定义lstm网络
def lstm_net(x,w,b,num_neurons):
    #将输入变成一个列表,列表的长度及时间步数
    inputs = tf.unstack(x,8,1)
    cells = [lstm_cell(units=n) for n in num_neurons]
    stacked_lstm_cells = tf.contrib.rnn.MultiRNNCell(cells)
    outputs,_ =  tf.contrib.rnn.static_rnn(stacked_lstm_cells,inputs,dtype=tf.float32)
    return tf.matmul(outputs[-1],w) + b

#超参数
num_neurons = [32,32,64,64,128,128]

#定义输出层的weight和bias
w = tf.Variable(tf.random_normal([num_neurons[-1],1]))
b = tf.Variable(tf.random_normal([1]))

#定义placeholder
x = tf.placeholder(shape=(None,8,8),dtype=tf.float32)

#定义pred和saver
pred = lstm_net(x,w,b,num_neurons)
saver = tf.train.Saver(tf.global_variables())

if __name__ == '__main__':

    #开启交互式Session
    sess = tf.InteractiveSession()
    saver.restore(sess,r'D:\股票预测\model_data\my_model.ckpt')

    #载入数据
    test_x,test_y = load_data()

    #预测
    predicts = sess.run(pred,feed_dict={x:test_x})
    predicts = ((predicts.max() - predicts) / (predicts.max() - predicts.min()))#数学校准

    #可视化
    plt.plot(predicts,'r',label='预测曲线')
    plt.plot(test_y,'g',label='真实曲线')
    plt.xlabel('第几天/days')
    plt.ylabel('开盘价(归一化)')
    plt.title('股票开盘价曲线预测(测试集)')
    plt.legend()
	plt.show()
    #关闭会话
    sess.close()	

在这里插入图片描述

6 lstm 预测航空旅客数目

数据集

airflights passengers dataset下载地址

https://raw.githubusercontent.com/jbrownlee/Datasets/master/airline-
passengers.csv

这个dataset包含从1949年到1960年每个月的航空旅客数目,共12*12=144个数字。

下面的程序中,我们以1949-1952的数据预测1953的数据,以1950-1953的数据预测1954的数据,以此类推,训练模型。

预测代码

    
    import numpy as np
    import matplotlib.pyplot as plt
    import pandas as pd
    import torch
    import torch.nn as nn
    from sklearn.preprocessing import MinMaxScaler
    import os


# super parameters
EPOCH = 400
learning_rate = 0.01
seq_length = 4 # 序列长度
n_feature = 12 # 序列中每个元素的特征数目。本程序采用的序列元素为一年的旅客,一年12个月,即12维特征。

# data
data = pd.read_csv('airline-passengers.csv')   # 共 "12年*12个月=144" 个数据
data = data.iloc[:, 1:5].values        # dataFrame, shape (144,1)
data = np.array(data).astype(np.float32)
sc = MinMaxScaler()
data = sc.fit_transform(data)          # 归一化
data = data.reshape(-1, n_feature)     # shape (12, 12)
 
trainData_x = []
trainData_y = []
for i in range(data.shape[0]-seq_length):
    tmp_x = data[i:i+seq_length, :]
    tmp_y = data[i+seq_length, :]
    trainData_x.append(tmp_x)
    trainData_y.append(tmp_y)
 
# model
class Net(nn.Module):
    def __init__(self, in_dim=12, hidden_dim=10, output_dim=12, n_layer=1):
        super(Net, self).__init__()
        self.in_dim = in_dim
        self.hidden_dim = hidden_dim
        self.output_dim = output_dim
        self.n_layer = n_layer
        self.lstm = nn.LSTM(input_size=in_dim, hidden_size=hidden_dim, num_layers=n_layer, batch_first=True)
        self.linear = nn.Linear(hidden_dim, output_dim)
 
    def forward(self, x):
        _, (h_out, _) = self.lstm(x)  # h_out是序列最后一个元素的hidden state
                                      # h_out's shape (batchsize, n_layer*n_direction, hidden_dim), i.e. (1, 1, 10)
                                      # n_direction根据是“否为双向”取值为1或2
        h_out = h_out.view(h_out.shape[0], -1)   # h_out's shape (batchsize, n_layer * n_direction * hidden_dim), i.e. (1, 10)
        h_out = self.linear(h_out)    # h_out's shape (batchsize, output_dim), (1, 12)
        return h_out
 
train = True
if train:
    model = Net()
    loss_func = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
    # train
    for epoch in range(EPOCH):
        total_loss = 0
        for iteration, X in enumerate(trainData_x):  # X's shape (seq_length, n_feature)
            X = torch.tensor(X).float()
            X = torch.unsqueeze(X, 0)                # X's shape (1, seq_length, n_feature), 1 is batchsize
            output = model(X)       # output's shape (1,12)
            output = torch.squeeze(output)
            loss = loss_func(output, torch.tensor(trainData_y[iteration]))
            optimizer.zero_grad()   # clear gradients for this training iteration
            loss.backward()         # computing gradients
            optimizer.step()        # update weights
            total_loss += loss
 
        if (epoch+1) % 20 == 0:
            print('epoch:{:3d}, loss:{:6.4f}'.format(epoch+1, total_loss.data.numpy()))
    # torch.save(model, 'flight_model.pkl')  # 这样保存会弹出UserWarning,建议采用下面的保存方法,详情可参考https://zhuanlan.zhihu.com/p/129948825
    torch.save({'state_dict': model.state_dict()}, 'checkpoint.pth.tar')
 
else:
    # model = torch.load('flight_model.pth')
    model = Net()
    checkpoint = torch.load('checkpoint.pth.tar')
    model.load_state_dict(checkpoint['state_dict'])
 
# predict
model.eval()
predict = []
for X in trainData_x:             # X's shape (seq_length, n_feature)
    X = torch.tensor(X).float()
    X = torch.unsqueeze(X, 0)     # X's shape (1, seq_length, n_feature), 1 is batchsize
    output = model(X)             # output's shape (1,12)
    output = torch.squeeze(output)
    predict.append(output.data.numpy())
 
# plot
plt.figure()
predict = np.array(predict)
predict = predict.reshape(-1, 1).squeeze()
x_tick = np.arange(len(predict)) + (seq_length*n_feature)
plt.plot(list(x_tick), predict, label='predict data')
 
data_original = data.reshape(-1, 1).squeeze()
plt.plot(range(len(data_original)), data_original, label='original data')
 
plt.legend(loc='best')
plt.show()

运行结果

在这里插入图片描述

在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/79503.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

低代码系列——初步认识低代码

低代码系列目录 一、初步认识低代码 二、低代码是什么 三、低代码平台的概念和分类 01.无代码开发平台 02.低代码应用平台(LCAP) 03.多重体验开发平台(MXDP) 04.智能业务流程管理套件(iBPMS) 四、低代码的能力指标 五、低代码平台jnpf 表单 报表 流程 权限 一、初步认识低代码 …

远程仓库上创建一个新的分支 `b` 并将远程分支 `a` 的内容克隆到 `b` 分支上

一、需求: 要在远程仓库上创建一个新的分支 b 并将远程分支 a 的内容克隆到 b 分支上,你可以按照以下步骤进行操作: 二、解决方案: 1. 首先,使用 git clone 命令克隆远程仓库到本地。例如,要克隆一个名为…

基于百度文心大模型创作的实践与谈论

文心概念 百度文心大模型源于产业、服务于产业,是产业级知识增强大模型。百度通过大模型与国产深度学习框架融合发展,打造了自主创新的AI底座,大幅降低了AI开发和应用的门槛,满足真实场景中的应用需求,真正发挥大模型…

角色入门02----动画蓝图

使用UE4的小白人动画,首先将它动画资产重定向。先ue4转ue5小银人,在把转换后的动画ue5转ue4给这个低模人物就动画就不会很鬼畜。 进入动画创建混合空间1D,这相当于可以组合很多动画 在跑步的混合空间里设置横坐标为Speed,最大值为400&#xf…

文末有福利 | 小海小源表情包第一弹正式上线

手机铃声提醒你有新的消息 抓紧打个招呼“来了” 收到暖心的称赞 真是按捺不住激动的小心脏啊 只要你愿意拿起书 知识的大门将为你敞开 呲溜~ 这是不是像极了努力工作一天后下班的你? 。。。。。。 看了这么多“海源”表情包 是不是觉得小海、小源愈发可爱了呢…

小数据 vs 大数据:为AI另辟蹊径的可操作数据

在人工智能背景下,您可能已听说过“大数据”这一流行语,那“小数据”这一词呢,您有听说过吗?无论您听过与否,小数据都无处不在:线上购物体验、航空公司推荐、天气预报等均依托小数据。小数据即一种采用可访…

Java【Spring】Bean 的作用域和生命周期

文章目录 前言前言一、关于 Bean 的作用域问题引入二、Bean 的作用域1, 什么是 Bean 的作用域2, Bean 的六种作用域3, 设置 Bean 的作用域(解决开篇的问题) 三、Bean 的生命周期总结 前言 前言 各位读者好, 我是小陈, 这是我的个人主页, 希望我的专栏能够帮助到你: &#x1f4…

Linux权限系列--给普通用户添加某个命令的sudo权限

原文网址:Linux权限系列--给普通用户添加某个命令的sudo权限_IT利刃出鞘的博客-CSDN博客 简介 说明 本文介绍Linux系统如何给普通用户添加某个命令的sudo权限。 使用场景 普通开发者可能需要sudo的命令: apt-get(经常要安装软件&#x…

ROS局部路径规划器插件teb_local_planner流程梳理(上)

在我之前的文章《ROS导航包Navigation中的 Movebase节点路径规划相关流程梳理》中已经介绍过Move_base节点调用局部路径规划器插件的接口函数是computeVelocityCommands,接下来,我们就从这个函数入手梳理一下teb_local_planner功能包的工作流程。 ☆注&a…

【探索Linux】—— 强大的命令行工具 P.5(yum工具、git 命令行提交代码)

阅读导航 前言一、软件包管理器 yum1.yum的概念yum的基本指令使用例子 二、git 命令行提交代码总结温馨提示 前言 前面我们讲了C语言的基础知识,也了解了一些数据结构,并且讲了有关C的一些知识,也学习了一些Linux的基本操作,也了…

WebGL游戏站优化实录【myshmup.com】

myshmup.com 允许在浏览器中创建 shmup(射击)游戏。 你可以使用具有创意通用许可证的资源或上传自己的艺术作品和声音。 创建的游戏可以在网站上发布。 该平台不需要编码,游戏对象的配置是在用户界面的帮助下执行的。 后端是使用Django框架开…

Vue3.X 创建简单项目

一、环境安装与检查 首先,我们要确保我们安装了构建vue框架的环境,不会安装的请自行百度,有很多安装教程。检查环境 node -v # 如果没有安装nodejs请安装,安装教程自行百度 vue -V# 没有安装,请执行npm install -g v…

【探索SpringCloud】服务发现-Nacos使用

前言 在聊服务注册中心时,便提到了Nacos。这次便来认识一下。当然,这自然没有官方介绍那般详尽,权当是学习了解Nacos原理的一个过程吧。 Nacos简介 Nacos,全名:dynamic Naming And Configuration Service. 而这个名…

Redis中的数据类型

Redis中的数据类型 Redis存储的是key-value结构的数据,其中key是字符串类型,value有5种常用的数据类型: 字符串string哈希hash列表list集合set有序集合sorted set

Streamlit 讲解专栏(十):数据可视化-图表绘制详解(上)

文章目录 1 前言2 st.line_chart:绘制线状图3 st.area_chart:绘制面积图4 st.bar_chart:绘制柱状图5 st.pyplot:绘制自定义图表6 结语 1 前言 在数据可视化的世界中,绘制清晰、易于理解的图表是非常关键的。Streamlit…

Stable Diffusion基础:ControlNet之图片高仿效果

今天继续给大家分享AI绘画中 ControlNet 的强大功能,本次的主角是 Reference,它可以将参照图片的风格迁移到新生成的图片中,这句话理解起来很困难,我们将通过几个实例来加深体会,比如照片转二次元风格、名画改造、AI减…

vmware添加额外网卡

为vmware虚拟机添加额外网卡 vmware 配置管理界面配置系统内配置查看系统中的网卡状态启用网卡重启网络修改IP地址 vmware 配置管理界面配置 关闭运行的的系统。 编辑虚拟机设置—》添加–》选择网络适配器 选择网络适配器的模式 系统内配置 查看系统中的网卡状态 第一…

高层建筑全景vr火灾隐患排查模拟培训软件助力群众防范火灾伤害

随着城市化进程的加快,楼宇建筑的数量也在不断增加。然而,楼宇消防安全问题也日益突出。为了提高楼宇员工和居民的消防安全意识,楼宇VR消防安全教育培训应运而生。VR安全培训公司深圳华锐视点制作的楼宇vr消防安全教育培训,包括消…

WinSW使用说明

使用说明 前言下载配置介绍示例jar包启动示例 安装服务 前言 由于使用windows自动的自启方法,不管是将程序启动服务放到开机自启文件夹中,还是创建任务计划程序,都没有很好的实现程序的开机自启效果,而WinSW很好的解决了这个问题…

Cat(6):API介绍—Metric

Metric 用于记录业务指标、指标可能包含对一个指标记录次数、记录平均值、记录总和,业务指标最低统计粒度为1分钟。 # Counter Cat.logMetricForCount("metric.key"); Cat.logMetricForCount("metric.key", 3); # Duration Cat.logMetricForDu…