stack 、 queue的语法使用及底层实现以及deque的介绍【C++】

文章目录

  • stack的使用
  • queue的使用
  • 适配器
  • queue的模拟实现
  • stack的模拟实现
  • deque

stack的使用

stack是一种容器适配器,具有后进先出,只能从容器的一端进行元素的插入与提取操作
在这里插入图片描述

#include <iostream>
#include <vector>
#include <stack>
using namespace std;

int main()
{
	stack<int, vector<int>> st;
	st.push(1);
	st.push(2);
	st.push(3);
	st.push(4);
	cout << st.size() << endl; //4
	while (!st.empty())
	{
		cout << st.top() << " ";
		st.pop();
	}
	cout << endl; //4 3 2 1
	return 0;
}

queue的使用

队列是一种容器适配器,具有先进先出,只能从容器的一端插入元素,另一端提取元素
在这里插入图片描述

#include <iostream>
#include <list>
#include <queue>
using namespace std;

int main()
{
	queue<int, list<int>> q;
	q.push(1);
	q.push(2);
	q.push(3);
	q.push(4);
	cout << q.size() << endl; //4
	while (!q.empty())
	{
		cout << q.front() << " ";
		q.pop();
	}
	cout << endl; //1 2 3 4
	return 0;
}

适配器

stack和queue在STL中并没有将其划分在容器的行列,而是称为容器适配器
因为stack和queue对其他容器的接口进行了包装,STL中stack和queue默认使用deque容器。在这里插入图片描述

queue的模拟实现

核心接口

front:获取对列头部(第一个元素)
back:获取队列尾部(最后一个元素)
size:获取队列中的元素个数
pop:删除队列头部元素
push:队列尾部插入元素
empty:判空

namespace cxq
{
	template<class T ,class Container = deque<T> >
	class queue
	{
	public:
		void push(const T & x)
		{
			_con.push_back(x);
		}
		void pop()
		{
			_con.pop_front();
		}
		T&	front()
		{
			return _con.front();
		}
		T& back()
		{
			return _con.back();
		}
		size_t size()
		{
			return _con.size();
		}
		bool empty()
		{
			return _con.empty();
		}
	private:

		Container _con;
	};
	void test_queue1()
	{
		queue<int, list<int> > q ;
		q.push(1);
		q.push(2);
		q.push(3);
		q.push(4);
		while (!q.empty())
		{
			cout << q.front() << " ";
			q.pop();
		}
		cout << endl;

	}
}

stack的模拟实现

核心接口

top:获取尾部元素
size:获取栈中的元素个数
pop:删除栈顶元素
push:栈顶插入元素
empty:判空

namespace cxq
{
	template<class T  , class Container = deque<T> >
	class Stack
	{
	public:
		void push( const T & x )
		{
			_con.push_back(x);
		}
	 	T &  top()
		{
			return _con.back();
		}
		void pop()
		{
			_con.pop_back();
		}
		size_t size()
		{
			return _con.size();
		}
		bool empty()
		{
			return _con.empty();
		}

	private:
		Container _con;
	};
	void test_Stack1()
	{
		stack<int> st1;
		st1.push(1);
		st1.push(2);
		st1.push(3);
		st1.push(4);
		while (!st1.empty())
		{
			cout << st1.top() << " ";
			st1.pop();
		}
		cout << endl;
		stack<int ,list<int> > st2;
		st2.push(1);
		st2.push(2);
		st2.push(3);
		st2.push(4);
		while (!st2.empty())
		{
			cout << st2.top() << " ";
			st2.pop();
		}
		cout << endl;
	}
}

deque

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。

在这里插入图片描述

deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组。
双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落 在了deque的迭代器身上

在这里插入图片描述

deque 与vector比较:
deque的头插和头删时,不需要挪动元素,效率特别高,而且在扩容时,也不需要移动大量的元素。
deque与list比较:
其底层是连续空间,空间利用率比较高,不需要存储额外字段。

但是,deque不适合遍历
因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构。

为什么STL选择deque作为stack和queue的底层默认容器

stack是一种后进先出的数据结构,因此只要具有push_back()和pop_back()操作的结构,都可以作为stack的底层容器,比如vector和list都可以。
queue是先进先出的数据结构,只要具有 push_back和pop_front操作的结构,都可以作为queue的底层容器,比如list。但是STL中对stack和 queue默认选择deque作为其底层容器,主要是因为:
1、stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
2、在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。
结合了deque的优点,而完美的避开了其缺陷。

如果想要对deque有比较深入的了解,可以阅读STL库的源码

// Deque implementation -*- C++ -*-

// Copyright (C) 2001-2018 Free Software Foundation, Inc.
//
// This file is part of the GNU ISO C++ Library.  This library is free
// software; you can redistribute it and/or modify it under the
// terms of the GNU General Public License as published by the
// Free Software Foundation; either version 3, or (at your option)
// any later version.

// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// Under Section 7 of GPL version 3, you are granted additional
// permissions described in the GCC Runtime Library Exception, version
// 3.1, as published by the Free Software Foundation.

// You should have received a copy of the GNU General Public License and
// a copy of the GCC Runtime Library Exception along with this program;
// see the files COPYING3 and COPYING.RUNTIME respectively.  If not, see
// <http://www.gnu.org/licenses/>.

/*
 *
 * Copyright (c) 1994
 * Hewlett-Packard Company
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Hewlett-Packard Company makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 *
 *
 * Copyright (c) 1997
 * Silicon Graphics Computer Systems, Inc.
 *
 * Permission to use, copy, modify, distribute and sell this software
 * and its documentation for any purpose is hereby granted without fee,
 * provided that the above copyright notice appear in all copies and
 * that both that copyright notice and this permission notice appear
 * in supporting documentation.  Silicon Graphics makes no
 * representations about the suitability of this software for any
 * purpose.  It is provided "as is" without express or implied warranty.
 */

/** @file bits/stl_deque.h
 *  This is an internal header file, included by other library headers.
 *  Do not attempt to use it directly. @headername{deque}
 */

#ifndef _STL_DEQUE_H
#define _STL_DEQUE_H 1

#include <bits/concept_check.h>
#include <bits/stl_iterator_base_types.h>
#include <bits/stl_iterator_base_funcs.h>
#if __cplusplus >= 201103L
#include <initializer_list>
#endif

#include <debug/assertions.h>

namespace std _GLIBCXX_VISIBILITY(default)
{
_GLIBCXX_BEGIN_NAMESPACE_VERSION
_GLIBCXX_BEGIN_NAMESPACE_CONTAINER

  /**
   *  @brief This function controls the size of memory nodes.
   *  @param  __size  The size of an element.
   *  @return   The number (not byte size) of elements per node.
   *
   *  This function started off as a compiler kludge from SGI, but
   *  seems to be a useful wrapper around a repeated constant
   *  expression.  The @b 512 is tunable (and no other code needs to
   *  change), but no investigation has been done since inheriting the
   *  SGI code.  Touch _GLIBCXX_DEQUE_BUF_SIZE only if you know what
   *  you are doing, however: changing it breaks the binary
   *  compatibility!!
  */

#ifndef _GLIBCXX_DEQUE_BUF_SIZE
#define _GLIBCXX_DEQUE_BUF_SIZE 512
#endif

  _GLIBCXX_CONSTEXPR inline size_t
  __deque_buf_size(size_t __size)
  { return (__size < _GLIBCXX_DEQUE_BUF_SIZE
	    ? size_t(_GLIBCXX_DEQUE_BUF_SIZE / __size) : size_t(1)); }


  /**
   *  @brief A deque::iterator.
   *
   *  Quite a bit of intelligence here.  Much of the functionality of
   *  deque is actually passed off to this class.  A deque holds two
   *  of these internally, marking its valid range.  Access to
   *  elements is done as offsets of either of those two, relying on
   *  operator overloading in this class.
   *
   *  All the functions are op overloads except for _M_set_node.
  */
  template<typename _Tp, typename _Ref, typename _Ptr>
    struct _Deque_iterator
    {
#if __cplusplus < 201103L
      typedef _Deque_iterator<_Tp, _Tp&, _Tp*>	     iterator;
      typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
      typedef _Tp*					 _Elt_pointer;
      typedef _Tp**					_Map_pointer;
#else
    private:
      template<typename _Up>
	using __ptr_to = typename pointer_traits<_Ptr>::template rebind<_Up>;
      template<typename _CvTp>
	using __iter = _Deque_iterator<_Tp, _CvTp&, __ptr_to<_CvTp>>;
    public:
      typedef __iter<_Tp>		iterator;
      typedef __iter<const _Tp>		const_iterator;
      typedef __ptr_to<_Tp>		_Elt_pointer;
      typedef __ptr_to<_Elt_pointer>	_Map_pointer;
#endif

      static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
      { return __deque_buf_size(sizeof(_Tp)); }

      typedef std::random_access_iterator_tag	iterator_category;
      typedef _Tp				value_type;
      typedef _Ptr				pointer;
      typedef _Ref				reference;
      typedef size_t				size_type;
      typedef ptrdiff_t				difference_type;
      typedef _Deque_iterator			_Self;

      _Elt_pointer _M_cur;
      _Elt_pointer _M_first;
      _Elt_pointer _M_last;
      _Map_pointer _M_node;

      _Deque_iterator(_Elt_pointer __x, _Map_pointer __y) _GLIBCXX_NOEXCEPT
      : _M_cur(__x), _M_first(*__y),
	_M_last(*__y + _S_buffer_size()), _M_node(__y) { }

      _Deque_iterator() _GLIBCXX_NOEXCEPT
      : _M_cur(), _M_first(), _M_last(), _M_node() { }

      _Deque_iterator(const iterator& __x) _GLIBCXX_NOEXCEPT
      : _M_cur(__x._M_cur), _M_first(__x._M_first),
	_M_last(__x._M_last), _M_node(__x._M_node) { }

      iterator
      _M_const_cast() const _GLIBCXX_NOEXCEPT
      { return iterator(_M_cur, _M_node); }

      reference
      operator*() const _GLIBCXX_NOEXCEPT
      { return *_M_cur; }

      pointer
      operator->() const _GLIBCXX_NOEXCEPT
      { return _M_cur; }

      _Self&
      operator++() _GLIBCXX_NOEXCEPT
      {
	++_M_cur;
	if (_M_cur == _M_last)
	  {
	    _M_set_node(_M_node + 1);
	    _M_cur = _M_first;
	  }
	return *this;
      }

      _Self
      operator++(int) _GLIBCXX_NOEXCEPT
      {
	_Self __tmp = *this;
	++*this;
	return __tmp;
      }

      _Self&
      operator--() _GLIBCXX_NOEXCEPT
      {
	if (_M_cur == _M_first)
	  {
	    _M_set_node(_M_node - 1);
	    _M_cur = _M_last;
	  }
	--_M_cur;
	return *this;
      }

      _Self
      operator--(int) _GLIBCXX_NOEXCEPT
      {
	_Self __tmp = *this;
	--*this;
	return __tmp;
      }

      _Self&
      operator+=(difference_type __n) _GLIBCXX_NOEXCEPT
      {
	const difference_type __offset = __n + (_M_cur - _M_first);
	if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
	  _M_cur += __n;
	else
	  {
	    const difference_type __node_offset =
	      __offset > 0 ? __offset / difference_type(_S_buffer_size())
			   : -difference_type((-__offset - 1)
					      / _S_buffer_size()) - 1;
	    _M_set_node(_M_node + __node_offset);
	    _M_cur = _M_first + (__offset - __node_offset
				 * difference_type(_S_buffer_size()));
	  }
	return *this;
      }

      _Self
      operator+(difference_type __n) const _GLIBCXX_NOEXCEPT
      {
	_Self __tmp = *this;
	return __tmp += __n;
      }

      _Self&
      operator-=(difference_type __n) _GLIBCXX_NOEXCEPT
      { return *this += -__n; }

      _Self
      operator-(difference_type __n) const _GLIBCXX_NOEXCEPT
      {
	_Self __tmp = *this;
	return __tmp -= __n;
      }

      reference
      operator[](difference_type __n) const _GLIBCXX_NOEXCEPT
      { return *(*this + __n); }

      /**
       *  Prepares to traverse new_node.  Sets everything except
       *  _M_cur, which should therefore be set by the caller
       *  immediately afterwards, based on _M_first and _M_last.
       */
      void
      _M_set_node(_Map_pointer __new_node) _GLIBCXX_NOEXCEPT
      {
	_M_node = __new_node;
	_M_first = *__new_node;
	_M_last = _M_first + difference_type(_S_buffer_size());
      }
    };

  // Note: we also provide overloads whose operands are of the same type in
  // order to avoid ambiguous overload resolution when std::rel_ops operators
  // are in scope (for additional details, see libstdc++/3628)
  template<typename _Tp, typename _Ref, typename _Ptr>
    inline bool
    operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    { return __x._M_cur == __y._M_cur; }

  template<typename _Tp, typename _RefL, typename _PtrL,
	   typename _RefR, typename _PtrR>
    inline bool
    operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    { return __x._M_cur == __y._M_cur; }

  template<typename _Tp, typename _Ref, typename _Ptr>
    inline bool
    operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    { return !(__x == __y); }

  template<typename _Tp, typename _RefL, typename _PtrL,
	   typename _RefR, typename _PtrR>
    inline bool
    operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    { return !(__x == __y); }

  template<typename _Tp, typename _Ref, typename _Ptr>
    inline bool
    operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
					  : (__x._M_node < __y._M_node); }

  template<typename _Tp, typename _RefL, typename _PtrL,
	   typename _RefR, typename _PtrR>
    inline bool
    operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    { return (__x._M_node == __y._M_node) ? (__x._M_cur < __y._M_cur)
					  : (__x._M_node < __y._M_node); }

  template<typename _Tp, typename _Ref, typename _Ptr>
    inline bool
    operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    { return __y < __x; }

  template<typename _Tp, typename _RefL, typename _PtrL,
	   typename _RefR, typename _PtrR>
    inline bool
    operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    { return __y < __x; }

  template<typename _Tp, typename _Ref, typename _Ptr>
    inline bool
    operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    { return !(__y < __x); }

  template<typename _Tp, typename _RefL, typename _PtrL,
	   typename _RefR, typename _PtrR>
    inline bool
    operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    { return !(__y < __x); }

  template<typename _Tp, typename _Ref, typename _Ptr>
    inline bool
    operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
	       const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    { return !(__x < __y); }

  template<typename _Tp, typename _RefL, typename _PtrL,
	   typename _RefR, typename _PtrR>
    inline bool
    operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
	       const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    { return !(__x < __y); }

  // _GLIBCXX_RESOLVE_LIB_DEFECTS
  // According to the resolution of DR179 not only the various comparison
  // operators but also operator- must accept mixed iterator/const_iterator
  // parameters.
  template<typename _Tp, typename _Ref, typename _Ptr>
    inline typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
    operator-(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
	      const _Deque_iterator<_Tp, _Ref, _Ptr>& __y) _GLIBCXX_NOEXCEPT
    {
      return typename _Deque_iterator<_Tp, _Ref, _Ptr>::difference_type
	(_Deque_iterator<_Tp, _Ref, _Ptr>::_S_buffer_size())
	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
	+ (__y._M_last - __y._M_cur);
    }

  template<typename _Tp, typename _RefL, typename _PtrL,
	   typename _RefR, typename _PtrR>
    inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
    operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
	      const _Deque_iterator<_Tp, _RefR, _PtrR>& __y) _GLIBCXX_NOEXCEPT
    {
      return typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
	(_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size())
	* (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first)
	+ (__y._M_last - __y._M_cur);
    }

  template<typename _Tp, typename _Ref, typename _Ptr>
    inline _Deque_iterator<_Tp, _Ref, _Ptr>
    operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
    _GLIBCXX_NOEXCEPT
    { return __x + __n; }

  template<typename _Tp>
    void
    fill(const _Deque_iterator<_Tp, _Tp&, _Tp*>&,
	 const _Deque_iterator<_Tp, _Tp&, _Tp*>&, const _Tp&);

  template<typename _Tp>
    _Deque_iterator<_Tp, _Tp&, _Tp*>
    copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
	 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
	 _Deque_iterator<_Tp, _Tp&, _Tp*>);

  template<typename _Tp>
    inline _Deque_iterator<_Tp, _Tp&, _Tp*>
    copy(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
	 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
	 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
    { return std::copy(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
		       _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
		       __result); }

  template<typename _Tp>
    _Deque_iterator<_Tp, _Tp&, _Tp*>
    copy_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
		  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
		  _Deque_iterator<_Tp, _Tp&, _Tp*>);

  template<typename _Tp>
    inline _Deque_iterator<_Tp, _Tp&, _Tp*>
    copy_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
		  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
		  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
    { return std::copy_backward(_Deque_iterator<_Tp,
				const _Tp&, const _Tp*>(__first),
				_Deque_iterator<_Tp,
				const _Tp&, const _Tp*>(__last),
				__result); }

#if __cplusplus >= 201103L
  template<typename _Tp>
    _Deque_iterator<_Tp, _Tp&, _Tp*>
    move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
	 _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
	 _Deque_iterator<_Tp, _Tp&, _Tp*>);

  template<typename _Tp>
    inline _Deque_iterator<_Tp, _Tp&, _Tp*>
    move(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
	 _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
	 _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
    { return std::move(_Deque_iterator<_Tp, const _Tp&, const _Tp*>(__first),
		       _Deque_iterator<_Tp, const _Tp&, const _Tp*>(__last),
		       __result); }

  template<typename _Tp>
    _Deque_iterator<_Tp, _Tp&, _Tp*>
    move_backward(_Deque_iterator<_Tp, const _Tp&, const _Tp*>,
		  _Deque_iterator<_Tp, const _Tp&, const _Tp*>,
		  _Deque_iterator<_Tp, _Tp&, _Tp*>);

  template<typename _Tp>
    inline _Deque_iterator<_Tp, _Tp&, _Tp*>
    move_backward(_Deque_iterator<_Tp, _Tp&, _Tp*> __first,
		  _Deque_iterator<_Tp, _Tp&, _Tp*> __last,
		  _Deque_iterator<_Tp, _Tp&, _Tp*> __result)
    { return std::move_backward(_Deque_iterator<_Tp,
				const _Tp&, const _Tp*>(__first),
				_Deque_iterator<_Tp,
				const _Tp&, const _Tp*>(__last),
				__result); }
#endif

  /**
   *  Deque base class.  This class provides the unified face for %deque's
   *  allocation.  This class's constructor and destructor allocate and
   *  deallocate (but do not initialize) storage.  This makes %exception
   *  safety easier.
   *
   *  Nothing in this class ever constructs or destroys an actual Tp element.
   *  (Deque handles that itself.)  Only/All memory management is performed
   *  here.
  */
  template<typename _Tp, typename _Alloc>
    class _Deque_base
    {
    protected:
      typedef typename __gnu_cxx::__alloc_traits<_Alloc>::template
	rebind<_Tp>::other _Tp_alloc_type;
      typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type>	 _Alloc_traits;

#if __cplusplus < 201103L
      typedef _Tp*					_Ptr;
      typedef const _Tp*				_Ptr_const;
#else
      typedef typename _Alloc_traits::pointer		_Ptr;
      typedef typename _Alloc_traits::const_pointer	_Ptr_const;
#endif

      typedef typename _Alloc_traits::template rebind<_Ptr>::other
	_Map_alloc_type;
      typedef __gnu_cxx::__alloc_traits<_Map_alloc_type> _Map_alloc_traits;

    public:
      typedef _Alloc		  allocator_type;
      typedef typename _Alloc_traits::size_type size_type;

      allocator_type
      get_allocator() const _GLIBCXX_NOEXCEPT
      { return allocator_type(_M_get_Tp_allocator()); }

      typedef _Deque_iterator<_Tp, _Tp&, _Ptr>	  iterator;
      typedef _Deque_iterator<_Tp, const _Tp&, _Ptr_const>   const_iterator;

      _Deque_base()
      : _M_impl()
      { _M_initialize_map(0); }

      _Deque_base(size_t __num_elements)
      : _M_impl()
      { _M_initialize_map(__num_elements); }

      _Deque_base(const allocator_type& __a, size_t __num_elements)
      : _M_impl(__a)
      { _M_initialize_map(__num_elements); }

      _Deque_base(const allocator_type& __a)
      : _M_impl(__a)
      { /* Caller must initialize map. */ }

#if __cplusplus >= 201103L
      _Deque_base(_Deque_base&& __x, false_type)
      : _M_impl(__x._M_move_impl())
      { }

      _Deque_base(_Deque_base&& __x, true_type)
      : _M_impl(std::move(__x._M_get_Tp_allocator()))
      {
	_M_initialize_map(0);
	if (__x._M_impl._M_map)
	  this->_M_impl._M_swap_data(__x._M_impl);
      }

      _Deque_base(_Deque_base&& __x)
      : _Deque_base(std::move(__x), typename _Alloc_traits::is_always_equal{})
      { }

      _Deque_base(_Deque_base&& __x, const allocator_type& __a, size_type __n)
      : _M_impl(__a)
      {
	if (__x.get_allocator() == __a)
	  {
	    if (__x._M_impl._M_map)
	      {
		_M_initialize_map(0);
		this->_M_impl._M_swap_data(__x._M_impl);
	      }
	  }
	else
	  {
	    _M_initialize_map(__n);
	  }
      }
#endif

      ~_Deque_base() _GLIBCXX_NOEXCEPT;

    protected:
      typedef typename iterator::_Map_pointer _Map_pointer;

      //This struct encapsulates the implementation of the std::deque
      //standard container and at the same time makes use of the EBO
      //for empty allocators.
      struct _Deque_impl
      : public _Tp_alloc_type
      {
	_Map_pointer _M_map;
	size_t _M_map_size;
	iterator _M_start;
	iterator _M_finish;

	_Deque_impl()
	: _Tp_alloc_type(), _M_map(), _M_map_size(0),
	  _M_start(), _M_finish()
	{ }

	_Deque_impl(const _Tp_alloc_type& __a) _GLIBCXX_NOEXCEPT
	: _Tp_alloc_type(__a), _M_map(), _M_map_size(0),
	  _M_start(), _M_finish()
	{ }

#if __cplusplus >= 201103L
	_Deque_impl(_Deque_impl&&) = default;

	_Deque_impl(_Tp_alloc_type&& __a) noexcept
	: _Tp_alloc_type(std::move(__a)), _M_map(), _M_map_size(0),
	  _M_start(), _M_finish()
	{ }
#endif

	void _M_swap_data(_Deque_impl& __x) _GLIBCXX_NOEXCEPT
	{
	  using std::swap;
	  swap(this->_M_start, __x._M_start);
	  swap(this->_M_finish, __x._M_finish);
	  swap(this->_M_map, __x._M_map);
	  swap(this->_M_map_size, __x._M_map_size);
	}
      };

      _Tp_alloc_type&
      _M_get_Tp_allocator() _GLIBCXX_NOEXCEPT
      { return *static_cast<_Tp_alloc_type*>(&this->_M_impl); }

      const _Tp_alloc_type&
      _M_get_Tp_allocator() const _GLIBCXX_NOEXCEPT
      { return *static_cast<const _Tp_alloc_type*>(&this->_M_impl); }

      _Map_alloc_type
      _M_get_map_allocator() const _GLIBCXX_NOEXCEPT
      { return _Map_alloc_type(_M_get_Tp_allocator()); }

      _Ptr
      _M_allocate_node()
      {
	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits;
	return _Traits::allocate(_M_impl, __deque_buf_size(sizeof(_Tp)));
      }

      void
      _M_deallocate_node(_Ptr __p) _GLIBCXX_NOEXCEPT
      {
	typedef __gnu_cxx::__alloc_traits<_Tp_alloc_type> _Traits;
	_Traits::deallocate(_M_impl, __p, __deque_buf_size(sizeof(_Tp)));
      }

      _Map_pointer
      _M_allocate_map(size_t __n)
      {
	_Map_alloc_type __map_alloc = _M_get_map_allocator();
	return _Map_alloc_traits::allocate(__map_alloc, __n);
      }

      void
      _M_deallocate_map(_Map_pointer __p, size_t __n) _GLIBCXX_NOEXCEPT
      {
	_Map_alloc_type __map_alloc = _M_get_map_allocator();
	_Map_alloc_traits::deallocate(__map_alloc, __p, __n);
      }

    protected:
      void _M_initialize_map(size_t);
      void _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish);
      void _M_destroy_nodes(_Map_pointer __nstart,
			    _Map_pointer __nfinish) _GLIBCXX_NOEXCEPT;
      enum { _S_initial_map_size = 8 };

      _Deque_impl _M_impl;

#if __cplusplus >= 201103L
    private:
      _Deque_impl
      _M_move_impl()
      {
	if (!_M_impl._M_map)
	  return std::move(_M_impl);

	// Create a copy of the current allocator.
	_Tp_alloc_type __alloc{_M_get_Tp_allocator()};
	// Put that copy in a moved-from state.
	_Tp_alloc_type __sink __attribute((__unused__)) {std::move(__alloc)};
	// Create an empty map that allocates using the moved-from allocator.
	_Deque_base __empty{__alloc};
	__empty._M_initialize_map(0);
	// Now safe to modify current allocator and perform non-throwing swaps.
	_Deque_impl __ret{std::move(_M_get_Tp_allocator())};
	_M_impl._M_swap_data(__ret);
	_M_impl._M_swap_data(__empty._M_impl);
	return __ret;
      }
#endif
    };

  template<typename _Tp, typename _Alloc>
    _Deque_base<_Tp, _Alloc>::
    ~_Deque_base() _GLIBCXX_NOEXCEPT
    {
      if (this->_M_impl._M_map)
	{
	  _M_destroy_nodes(this->_M_impl._M_start._M_node,
			   this->_M_impl._M_finish._M_node + 1);
	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
	}
    }

  /**
   *  @brief Layout storage.
   *  @param  __num_elements  The count of T's for which to allocate space
   *                          at first.
   *  @return   Nothing.
   *
   *  The initial underlying memory layout is a bit complicated...
  */
  template<typename _Tp, typename _Alloc>
    void
    _Deque_base<_Tp, _Alloc>::
    _M_initialize_map(size_t __num_elements)
    {
      const size_t __num_nodes = (__num_elements/ __deque_buf_size(sizeof(_Tp))
				  + 1);

      this->_M_impl._M_map_size = std::max((size_t) _S_initial_map_size,
					   size_t(__num_nodes + 2));
      this->_M_impl._M_map = _M_allocate_map(this->_M_impl._M_map_size);

      // For "small" maps (needing less than _M_map_size nodes), allocation
      // starts in the middle elements and grows outwards.  So nstart may be
      // the beginning of _M_map, but for small maps it may be as far in as
      // _M_map+3.

      _Map_pointer __nstart = (this->_M_impl._M_map
			       + (this->_M_impl._M_map_size - __num_nodes) / 2);
      _Map_pointer __nfinish = __nstart + __num_nodes;

      __try
	{ _M_create_nodes(__nstart, __nfinish); }
      __catch(...)
	{
	  _M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
	  this->_M_impl._M_map = _Map_pointer();
	  this->_M_impl._M_map_size = 0;
	  __throw_exception_again;
	}

      this->_M_impl._M_start._M_set_node(__nstart);
      this->_M_impl._M_finish._M_set_node(__nfinish - 1);
      this->_M_impl._M_start._M_cur = _M_impl._M_start._M_first;
      this->_M_impl._M_finish._M_cur = (this->_M_impl._M_finish._M_first
					+ __num_elements
					% __deque_buf_size(sizeof(_Tp)));
    }

  template<typename _Tp, typename _Alloc>
    void
    _Deque_base<_Tp, _Alloc>::
    _M_create_nodes(_Map_pointer __nstart, _Map_pointer __nfinish)
    {
      _Map_pointer __cur;
      __try
	{
	  for (__cur = __nstart; __cur < __nfinish; ++__cur)
	    *__cur = this->_M_allocate_node();
	}
      __catch(...)
	{
	  _M_destroy_nodes(__nstart, __cur);
	  __throw_exception_again;
	}
    }

  template<typename _Tp, typename _Alloc>
    void
    _Deque_base<_Tp, _Alloc>::
    _M_destroy_nodes(_Map_pointer __nstart,
		     _Map_pointer __nfinish) _GLIBCXX_NOEXCEPT
    {
      for (_Map_pointer __n = __nstart; __n < __nfinish; ++__n)
	_M_deallocate_node(*__n);
    }

  /**
   *  @brief  A standard container using fixed-size memory allocation and
   *  constant-time manipulation of elements at either end.
   *
   *  @ingroup sequences
   *
   *  @tparam _Tp  Type of element.
   *  @tparam _Alloc  Allocator type, defaults to allocator<_Tp>.
   *
   *  Meets the requirements of a <a href="tables.html#65">container</a>, a
   *  <a href="tables.html#66">reversible container</a>, and a
   *  <a href="tables.html#67">sequence</a>, including the
   *  <a href="tables.html#68">optional sequence requirements</a>.
   *
   *  In previous HP/SGI versions of deque, there was an extra template
   *  parameter so users could control the node size.  This extension turned
   *  out to violate the C++ standard (it can be detected using template
   *  template parameters), and it was removed.
   *
   *  Here's how a deque<Tp> manages memory.  Each deque has 4 members:
   *
   *  - Tp**        _M_map
   *  - size_t      _M_map_size
   *  - iterator    _M_start, _M_finish
   *
   *  map_size is at least 8.  %map is an array of map_size
   *  pointers-to-@a nodes.  (The name %map has nothing to do with the
   *  std::map class, and @b nodes should not be confused with
   *  std::list's usage of @a node.)
   *
   *  A @a node has no specific type name as such, but it is referred
   *  to as @a node in this file.  It is a simple array-of-Tp.  If Tp
   *  is very large, there will be one Tp element per node (i.e., an
   *  @a array of one).  For non-huge Tp's, node size is inversely
   *  related to Tp size: the larger the Tp, the fewer Tp's will fit
   *  in a node.  The goal here is to keep the total size of a node
   *  relatively small and constant over different Tp's, to improve
   *  allocator efficiency.
   *
   *  Not every pointer in the %map array will point to a node.  If
   *  the initial number of elements in the deque is small, the
   *  /middle/ %map pointers will be valid, and the ones at the edges
   *  will be unused.  This same situation will arise as the %map
   *  grows: available %map pointers, if any, will be on the ends.  As
   *  new nodes are created, only a subset of the %map's pointers need
   *  to be copied @a outward.
   *
   *  Class invariants:
   * - For any nonsingular iterator i:
   *    - i.node points to a member of the %map array.  (Yes, you read that
   *      correctly:  i.node does not actually point to a node.)  The member of
   *      the %map array is what actually points to the node.
   *    - i.first == *(i.node)    (This points to the node (first Tp element).)
   *    - i.last  == i.first + node_size
   *    - i.cur is a pointer in the range [i.first, i.last).  NOTE:
   *      the implication of this is that i.cur is always a dereferenceable
   *      pointer, even if i is a past-the-end iterator.
   * - Start and Finish are always nonsingular iterators.  NOTE: this
   * means that an empty deque must have one node, a deque with <N
   * elements (where N is the node buffer size) must have one node, a
   * deque with N through (2N-1) elements must have two nodes, etc.
   * - For every node other than start.node and finish.node, every
   * element in the node is an initialized object.  If start.node ==
   * finish.node, then [start.cur, finish.cur) are initialized
   * objects, and the elements outside that range are uninitialized
   * storage.  Otherwise, [start.cur, start.last) and [finish.first,
   * finish.cur) are initialized objects, and [start.first, start.cur)
   * and [finish.cur, finish.last) are uninitialized storage.
   * - [%map, %map + map_size) is a valid, non-empty range.
   * - [start.node, finish.node] is a valid range contained within
   *   [%map, %map + map_size).
   * - A pointer in the range [%map, %map + map_size) points to an allocated
   *   node if and only if the pointer is in the range
   *   [start.node, finish.node].
   *
   *  Here's the magic:  nothing in deque is @b aware of the discontiguous
   *  storage!
   *
   *  The memory setup and layout occurs in the parent, _Base, and the iterator
   *  class is entirely responsible for @a leaping from one node to the next.
   *  All the implementation routines for deque itself work only through the
   *  start and finish iterators.  This keeps the routines simple and sane,
   *  and we can use other standard algorithms as well.
  */
  template<typename _Tp, typename _Alloc = std::allocator<_Tp> >
    class deque : protected _Deque_base<_Tp, _Alloc>
    {
#ifdef _GLIBCXX_CONCEPT_CHECKS
      // concept requirements
      typedef typename _Alloc::value_type	_Alloc_value_type;
# if __cplusplus < 201103L
      __glibcxx_class_requires(_Tp, _SGIAssignableConcept)
# endif
      __glibcxx_class_requires2(_Tp, _Alloc_value_type, _SameTypeConcept)
#endif

#if __cplusplus >= 201103L
      static_assert(is_same<typename remove_cv<_Tp>::type, _Tp>::value,
	  "std::deque must have a non-const, non-volatile value_type");
# ifdef __STRICT_ANSI__
      static_assert(is_same<typename _Alloc::value_type, _Tp>::value,
	  "std::deque must have the same value_type as its allocator");
# endif
#endif

      typedef _Deque_base<_Tp, _Alloc>			_Base;
      typedef typename _Base::_Tp_alloc_type		_Tp_alloc_type;
      typedef typename _Base::_Alloc_traits		_Alloc_traits;
      typedef typename _Base::_Map_pointer		_Map_pointer;

    public:
      typedef _Tp					value_type;
      typedef typename _Alloc_traits::pointer		pointer;
      typedef typename _Alloc_traits::const_pointer	const_pointer;
      typedef typename _Alloc_traits::reference		reference;
      typedef typename _Alloc_traits::const_reference	const_reference;
      typedef typename _Base::iterator			iterator;
      typedef typename _Base::const_iterator		const_iterator;
      typedef std::reverse_iterator<const_iterator>	const_reverse_iterator;
      typedef std::reverse_iterator<iterator>		reverse_iterator;
      typedef size_t					size_type;
      typedef ptrdiff_t					difference_type;
      typedef _Alloc					allocator_type;

    protected:
      static size_t _S_buffer_size() _GLIBCXX_NOEXCEPT
      { return __deque_buf_size(sizeof(_Tp)); }

      // Functions controlling memory layout, and nothing else.
      using _Base::_M_initialize_map;
      using _Base::_M_create_nodes;
      using _Base::_M_destroy_nodes;
      using _Base::_M_allocate_node;
      using _Base::_M_deallocate_node;
      using _Base::_M_allocate_map;
      using _Base::_M_deallocate_map;
      using _Base::_M_get_Tp_allocator;

      /**
       *  A total of four data members accumulated down the hierarchy.
       *  May be accessed via _M_impl.*
       */
      using _Base::_M_impl;

    public:
      // [23.2.1.1] construct/copy/destroy
      // (assign() and get_allocator() are also listed in this section)

      /**
       *  @brief  Creates a %deque with no elements.
       */
      deque() : _Base() { }

      /**
       *  @brief  Creates a %deque with no elements.
       *  @param  __a  An allocator object.
       */
      explicit
      deque(const allocator_type& __a)
      : _Base(__a, 0) { }

#if __cplusplus >= 201103L
      /**
       *  @brief  Creates a %deque with default constructed elements.
       *  @param  __n  The number of elements to initially create.
       *  @param  __a  An allocator.
       *
       *  This constructor fills the %deque with @a n default
       *  constructed elements.
       */
      explicit
      deque(size_type __n, const allocator_type& __a = allocator_type())
      : _Base(__a, __n)
      { _M_default_initialize(); }

      /**
       *  @brief  Creates a %deque with copies of an exemplar element.
       *  @param  __n  The number of elements to initially create.
       *  @param  __value  An element to copy.
       *  @param  __a  An allocator.
       *
       *  This constructor fills the %deque with @a __n copies of @a __value.
       */
      deque(size_type __n, const value_type& __value,
	    const allocator_type& __a = allocator_type())
      : _Base(__a, __n)
      { _M_fill_initialize(__value); }
#else
      /**
       *  @brief  Creates a %deque with copies of an exemplar element.
       *  @param  __n  The number of elements to initially create.
       *  @param  __value  An element to copy.
       *  @param  __a  An allocator.
       *
       *  This constructor fills the %deque with @a __n copies of @a __value.
       */
      explicit
      deque(size_type __n, const value_type& __value = value_type(),
	    const allocator_type& __a = allocator_type())
      : _Base(__a, __n)
      { _M_fill_initialize(__value); }
#endif

      /**
       *  @brief  %Deque copy constructor.
       *  @param  __x  A %deque of identical element and allocator types.
       *
       *  The newly-created %deque uses a copy of the allocator object used
       *  by @a __x (unless the allocator traits dictate a different object).
       */
      deque(const deque& __x)
      : _Base(_Alloc_traits::_S_select_on_copy(__x._M_get_Tp_allocator()),
	      __x.size())
      { std::__uninitialized_copy_a(__x.begin(), __x.end(),
				    this->_M_impl._M_start,
				    _M_get_Tp_allocator()); }

#if __cplusplus >= 201103L
      /**
       *  @brief  %Deque move constructor.
       *  @param  __x  A %deque of identical element and allocator types.
       *
       *  The newly-created %deque contains the exact contents of @a __x.
       *  The contents of @a __x are a valid, but unspecified %deque.
       */
      deque(deque&& __x)
      : _Base(std::move(__x)) { }

      /// Copy constructor with alternative allocator
      deque(const deque& __x, const allocator_type& __a)
      : _Base(__a, __x.size())
      { std::__uninitialized_copy_a(__x.begin(), __x.end(),
				    this->_M_impl._M_start,
				    _M_get_Tp_allocator()); }

      /// Move constructor with alternative allocator
      deque(deque&& __x, const allocator_type& __a)
      : _Base(std::move(__x), __a, __x.size())
      {
	if (__x.get_allocator() != __a)
	  {
	    std::__uninitialized_move_a(__x.begin(), __x.end(),
					this->_M_impl._M_start,
					_M_get_Tp_allocator());
	    __x.clear();
	  }
      }

      /**
       *  @brief  Builds a %deque from an initializer list.
       *  @param  __l  An initializer_list.
       *  @param  __a  An allocator object.
       *
       *  Create a %deque consisting of copies of the elements in the
       *  initializer_list @a __l.
       *
       *  This will call the element type's copy constructor N times
       *  (where N is __l.size()) and do no memory reallocation.
       */
      deque(initializer_list<value_type> __l,
	    const allocator_type& __a = allocator_type())
      : _Base(__a)
      {
	_M_range_initialize(__l.begin(), __l.end(),
			    random_access_iterator_tag());
      }
#endif

      /**
       *  @brief  Builds a %deque from a range.
       *  @param  __first  An input iterator.
       *  @param  __last  An input iterator.
       *  @param  __a  An allocator object.
       *
       *  Create a %deque consisting of copies of the elements from [__first,
       *  __last).
       *
       *  If the iterators are forward, bidirectional, or random-access, then
       *  this will call the elements' copy constructor N times (where N is
       *  distance(__first,__last)) and do no memory reallocation.  But if only
       *  input iterators are used, then this will do at most 2N calls to the
       *  copy constructor, and logN memory reallocations.
       */
#if __cplusplus >= 201103L
      template<typename _InputIterator,
	       typename = std::_RequireInputIter<_InputIterator>>
	deque(_InputIterator __first, _InputIterator __last,
	      const allocator_type& __a = allocator_type())
	: _Base(__a)
	{ _M_initialize_dispatch(__first, __last, __false_type()); }
#else
      template<typename _InputIterator>
	deque(_InputIterator __first, _InputIterator __last,
	      const allocator_type& __a = allocator_type())
	: _Base(__a)
	{
	  // Check whether it's an integral type.  If so, it's not an iterator.
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_initialize_dispatch(__first, __last, _Integral());
	}
#endif

      /**
       *  The dtor only erases the elements, and note that if the elements
       *  themselves are pointers, the pointed-to memory is not touched in any
       *  way.  Managing the pointer is the user's responsibility.
       */
      ~deque()
      { _M_destroy_data(begin(), end(), _M_get_Tp_allocator()); }

      /**
       *  @brief  %Deque assignment operator.
       *  @param  __x  A %deque of identical element and allocator types.
       *
       *  All the elements of @a x are copied.
       *
       *  The newly-created %deque uses a copy of the allocator object used
       *  by @a __x (unless the allocator traits dictate a different object).
       */
      deque&
      operator=(const deque& __x);

#if __cplusplus >= 201103L
      /**
       *  @brief  %Deque move assignment operator.
       *  @param  __x  A %deque of identical element and allocator types.
       *
       *  The contents of @a __x are moved into this deque (without copying,
       *  if the allocators permit it).
       *  @a __x is a valid, but unspecified %deque.
       */
      deque&
      operator=(deque&& __x) noexcept(_Alloc_traits::_S_always_equal())
      {
	using __always_equal = typename _Alloc_traits::is_always_equal;
	_M_move_assign1(std::move(__x), __always_equal{});
	return *this;
      }

      /**
       *  @brief  Assigns an initializer list to a %deque.
       *  @param  __l  An initializer_list.
       *
       *  This function fills a %deque with copies of the elements in the
       *  initializer_list @a __l.
       *
       *  Note that the assignment completely changes the %deque and that the
       *  resulting %deque's size is the same as the number of elements
       *  assigned.
       */
      deque&
      operator=(initializer_list<value_type> __l)
      {
	_M_assign_aux(__l.begin(), __l.end(),
		      random_access_iterator_tag());
	return *this;
      }
#endif

      /**
       *  @brief  Assigns a given value to a %deque.
       *  @param  __n  Number of elements to be assigned.
       *  @param  __val  Value to be assigned.
       *
       *  This function fills a %deque with @a n copies of the given
       *  value.  Note that the assignment completely changes the
       *  %deque and that the resulting %deque's size is the same as
       *  the number of elements assigned.
       */
      void
      assign(size_type __n, const value_type& __val)
      { _M_fill_assign(__n, __val); }

      /**
       *  @brief  Assigns a range to a %deque.
       *  @param  __first  An input iterator.
       *  @param  __last   An input iterator.
       *
       *  This function fills a %deque with copies of the elements in the
       *  range [__first,__last).
       *
       *  Note that the assignment completely changes the %deque and that the
       *  resulting %deque's size is the same as the number of elements
       *  assigned.
       */
#if __cplusplus >= 201103L
      template<typename _InputIterator,
	       typename = std::_RequireInputIter<_InputIterator>>
	void
	assign(_InputIterator __first, _InputIterator __last)
	{ _M_assign_dispatch(__first, __last, __false_type()); }
#else
      template<typename _InputIterator>
	void
	assign(_InputIterator __first, _InputIterator __last)
	{
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_assign_dispatch(__first, __last, _Integral());
	}
#endif

#if __cplusplus >= 201103L
      /**
       *  @brief  Assigns an initializer list to a %deque.
       *  @param  __l  An initializer_list.
       *
       *  This function fills a %deque with copies of the elements in the
       *  initializer_list @a __l.
       *
       *  Note that the assignment completely changes the %deque and that the
       *  resulting %deque's size is the same as the number of elements
       *  assigned.
       */
      void
      assign(initializer_list<value_type> __l)
      { _M_assign_aux(__l.begin(), __l.end(), random_access_iterator_tag()); }
#endif

      /// Get a copy of the memory allocation object.
      allocator_type
      get_allocator() const _GLIBCXX_NOEXCEPT
      { return _Base::get_allocator(); }

      // iterators
      /**
       *  Returns a read/write iterator that points to the first element in the
       *  %deque.  Iteration is done in ordinary element order.
       */
      iterator
      begin() _GLIBCXX_NOEXCEPT
      { return this->_M_impl._M_start; }

      /**
       *  Returns a read-only (constant) iterator that points to the first
       *  element in the %deque.  Iteration is done in ordinary element order.
       */
      const_iterator
      begin() const _GLIBCXX_NOEXCEPT
      { return this->_M_impl._M_start; }

      /**
       *  Returns a read/write iterator that points one past the last
       *  element in the %deque.  Iteration is done in ordinary
       *  element order.
       */
      iterator
      end() _GLIBCXX_NOEXCEPT
      { return this->_M_impl._M_finish; }

      /**
       *  Returns a read-only (constant) iterator that points one past
       *  the last element in the %deque.  Iteration is done in
       *  ordinary element order.
       */
      const_iterator
      end() const _GLIBCXX_NOEXCEPT
      { return this->_M_impl._M_finish; }

      /**
       *  Returns a read/write reverse iterator that points to the
       *  last element in the %deque.  Iteration is done in reverse
       *  element order.
       */
      reverse_iterator
      rbegin() _GLIBCXX_NOEXCEPT
      { return reverse_iterator(this->_M_impl._M_finish); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to the last element in the %deque.  Iteration is done in
       *  reverse element order.
       */
      const_reverse_iterator
      rbegin() const _GLIBCXX_NOEXCEPT
      { return const_reverse_iterator(this->_M_impl._M_finish); }

      /**
       *  Returns a read/write reverse iterator that points to one
       *  before the first element in the %deque.  Iteration is done
       *  in reverse element order.
       */
      reverse_iterator
      rend() _GLIBCXX_NOEXCEPT
      { return reverse_iterator(this->_M_impl._M_start); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to one before the first element in the %deque.  Iteration is
       *  done in reverse element order.
       */
      const_reverse_iterator
      rend() const _GLIBCXX_NOEXCEPT
      { return const_reverse_iterator(this->_M_impl._M_start); }

#if __cplusplus >= 201103L
      /**
       *  Returns a read-only (constant) iterator that points to the first
       *  element in the %deque.  Iteration is done in ordinary element order.
       */
      const_iterator
      cbegin() const noexcept
      { return this->_M_impl._M_start; }

      /**
       *  Returns a read-only (constant) iterator that points one past
       *  the last element in the %deque.  Iteration is done in
       *  ordinary element order.
       */
      const_iterator
      cend() const noexcept
      { return this->_M_impl._M_finish; }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to the last element in the %deque.  Iteration is done in
       *  reverse element order.
       */
      const_reverse_iterator
      crbegin() const noexcept
      { return const_reverse_iterator(this->_M_impl._M_finish); }

      /**
       *  Returns a read-only (constant) reverse iterator that points
       *  to one before the first element in the %deque.  Iteration is
       *  done in reverse element order.
       */
      const_reverse_iterator
      crend() const noexcept
      { return const_reverse_iterator(this->_M_impl._M_start); }
#endif

      // [23.2.1.2] capacity
      /**  Returns the number of elements in the %deque.  */
      size_type
      size() const _GLIBCXX_NOEXCEPT
      { return this->_M_impl._M_finish - this->_M_impl._M_start; }

      /**  Returns the size() of the largest possible %deque.  */
      size_type
      max_size() const _GLIBCXX_NOEXCEPT
      { return _Alloc_traits::max_size(_M_get_Tp_allocator()); }

#if __cplusplus >= 201103L
      /**
       *  @brief  Resizes the %deque to the specified number of elements.
       *  @param  __new_size  Number of elements the %deque should contain.
       *
       *  This function will %resize the %deque to the specified
       *  number of elements.  If the number is smaller than the
       *  %deque's current size the %deque is truncated, otherwise
       *  default constructed elements are appended.
       */
      void
      resize(size_type __new_size)
      {
	const size_type __len = size();
	if (__new_size > __len)
	  _M_default_append(__new_size - __len);
	else if (__new_size < __len)
	  _M_erase_at_end(this->_M_impl._M_start
			  + difference_type(__new_size));
      }

      /**
       *  @brief  Resizes the %deque to the specified number of elements.
       *  @param  __new_size  Number of elements the %deque should contain.
       *  @param  __x  Data with which new elements should be populated.
       *
       *  This function will %resize the %deque to the specified
       *  number of elements.  If the number is smaller than the
       *  %deque's current size the %deque is truncated, otherwise the
       *  %deque is extended and new elements are populated with given
       *  data.
       */
      void
      resize(size_type __new_size, const value_type& __x)
      {
	const size_type __len = size();
	if (__new_size > __len)
	  _M_fill_insert(this->_M_impl._M_finish, __new_size - __len, __x);
	else if (__new_size < __len)
	  _M_erase_at_end(this->_M_impl._M_start
			  + difference_type(__new_size));
      }
#else
      /**
       *  @brief  Resizes the %deque to the specified number of elements.
       *  @param  __new_size  Number of elements the %deque should contain.
       *  @param  __x  Data with which new elements should be populated.
       *
       *  This function will %resize the %deque to the specified
       *  number of elements.  If the number is smaller than the
       *  %deque's current size the %deque is truncated, otherwise the
       *  %deque is extended and new elements are populated with given
       *  data.
       */
      void
      resize(size_type __new_size, value_type __x = value_type())
      {
	const size_type __len = size();
	if (__new_size > __len)
	  _M_fill_insert(this->_M_impl._M_finish, __new_size - __len, __x);
	else if (__new_size < __len)
	  _M_erase_at_end(this->_M_impl._M_start
			  + difference_type(__new_size));
      }
#endif

#if __cplusplus >= 201103L
      /**  A non-binding request to reduce memory use.  */
      void
      shrink_to_fit() noexcept
      { _M_shrink_to_fit(); }
#endif

      /**
       *  Returns true if the %deque is empty.  (Thus begin() would
       *  equal end().)
       */
      bool
      empty() const _GLIBCXX_NOEXCEPT
      { return this->_M_impl._M_finish == this->_M_impl._M_start; }

      // element access
      /**
       *  @brief Subscript access to the data contained in the %deque.
       *  @param __n The index of the element for which data should be
       *  accessed.
       *  @return  Read/write reference to data.
       *
       *  This operator allows for easy, array-style, data access.
       *  Note that data access with this operator is unchecked and
       *  out_of_range lookups are not defined. (For checked lookups
       *  see at().)
       */
      reference
      operator[](size_type __n) _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_subscript(__n);
	return this->_M_impl._M_start[difference_type(__n)];
      }

      /**
       *  @brief Subscript access to the data contained in the %deque.
       *  @param __n The index of the element for which data should be
       *  accessed.
       *  @return  Read-only (constant) reference to data.
       *
       *  This operator allows for easy, array-style, data access.
       *  Note that data access with this operator is unchecked and
       *  out_of_range lookups are not defined. (For checked lookups
       *  see at().)
       */
      const_reference
      operator[](size_type __n) const _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_subscript(__n);
	return this->_M_impl._M_start[difference_type(__n)];
      }

    protected:
      /// Safety check used only from at().
      void
      _M_range_check(size_type __n) const
      {
	if (__n >= this->size())
	  __throw_out_of_range_fmt(__N("deque::_M_range_check: __n "
				       "(which is %zu)>= this->size() "
				       "(which is %zu)"),
				   __n, this->size());
      }

    public:
      /**
       *  @brief  Provides access to the data contained in the %deque.
       *  @param __n The index of the element for which data should be
       *  accessed.
       *  @return  Read/write reference to data.
       *  @throw  std::out_of_range  If @a __n is an invalid index.
       *
       *  This function provides for safer data access.  The parameter
       *  is first checked that it is in the range of the deque.  The
       *  function throws out_of_range if the check fails.
       */
      reference
      at(size_type __n)
      {
	_M_range_check(__n);
	return (*this)[__n];
      }

      /**
       *  @brief  Provides access to the data contained in the %deque.
       *  @param __n The index of the element for which data should be
       *  accessed.
       *  @return  Read-only (constant) reference to data.
       *  @throw  std::out_of_range  If @a __n is an invalid index.
       *
       *  This function provides for safer data access.  The parameter is first
       *  checked that it is in the range of the deque.  The function throws
       *  out_of_range if the check fails.
       */
      const_reference
      at(size_type __n) const
      {
	_M_range_check(__n);
	return (*this)[__n];
      }

      /**
       *  Returns a read/write reference to the data at the first
       *  element of the %deque.
       */
      reference
      front() _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_nonempty();
	return *begin();
      }

      /**
       *  Returns a read-only (constant) reference to the data at the first
       *  element of the %deque.
       */
      const_reference
      front() const _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_nonempty();
	return *begin();
      }

      /**
       *  Returns a read/write reference to the data at the last element of the
       *  %deque.
       */
      reference
      back() _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_nonempty();
	iterator __tmp = end();
	--__tmp;
	return *__tmp;
      }

      /**
       *  Returns a read-only (constant) reference to the data at the last
       *  element of the %deque.
       */
      const_reference
      back() const _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_nonempty();
	const_iterator __tmp = end();
	--__tmp;
	return *__tmp;
      }

      // [23.2.1.2] modifiers
      /**
       *  @brief  Add data to the front of the %deque.
       *  @param  __x  Data to be added.
       *
       *  This is a typical stack operation.  The function creates an
       *  element at the front of the %deque and assigns the given
       *  data to it.  Due to the nature of a %deque this operation
       *  can be done in constant time.
       */
      void
      push_front(const value_type& __x)
      {
	if (this->_M_impl._M_start._M_cur != this->_M_impl._M_start._M_first)
	  {
	    _Alloc_traits::construct(this->_M_impl,
				     this->_M_impl._M_start._M_cur - 1,
				     __x);
	    --this->_M_impl._M_start._M_cur;
	  }
	else
	  _M_push_front_aux(__x);
      }

#if __cplusplus >= 201103L
      void
      push_front(value_type&& __x)
      { emplace_front(std::move(__x)); }

      template<typename... _Args>
#if __cplusplus > 201402L
	reference
#else
	void
#endif
	emplace_front(_Args&&... __args);
#endif

      /**
       *  @brief  Add data to the end of the %deque.
       *  @param  __x  Data to be added.
       *
       *  This is a typical stack operation.  The function creates an
       *  element at the end of the %deque and assigns the given data
       *  to it.  Due to the nature of a %deque this operation can be
       *  done in constant time.
       */
      void
      push_back(const value_type& __x)
      {
	if (this->_M_impl._M_finish._M_cur
	    != this->_M_impl._M_finish._M_last - 1)
	  {
	    _Alloc_traits::construct(this->_M_impl,
				     this->_M_impl._M_finish._M_cur, __x);
	    ++this->_M_impl._M_finish._M_cur;
	  }
	else
	  _M_push_back_aux(__x);
      }

#if __cplusplus >= 201103L
      void
      push_back(value_type&& __x)
      { emplace_back(std::move(__x)); }

      template<typename... _Args>
#if __cplusplus > 201402L
	reference
#else
	void
#endif
	emplace_back(_Args&&... __args);
#endif

      /**
       *  @brief  Removes first element.
       *
       *  This is a typical stack operation.  It shrinks the %deque by one.
       *
       *  Note that no data is returned, and if the first element's data is
       *  needed, it should be retrieved before pop_front() is called.
       */
      void
      pop_front() _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_nonempty();
	if (this->_M_impl._M_start._M_cur
	    != this->_M_impl._M_start._M_last - 1)
	  {
	    _Alloc_traits::destroy(this->_M_impl,
				   this->_M_impl._M_start._M_cur);
	    ++this->_M_impl._M_start._M_cur;
	  }
	else
	  _M_pop_front_aux();
      }

      /**
       *  @brief  Removes last element.
       *
       *  This is a typical stack operation.  It shrinks the %deque by one.
       *
       *  Note that no data is returned, and if the last element's data is
       *  needed, it should be retrieved before pop_back() is called.
       */
      void
      pop_back() _GLIBCXX_NOEXCEPT
      {
	__glibcxx_requires_nonempty();
	if (this->_M_impl._M_finish._M_cur
	    != this->_M_impl._M_finish._M_first)
	  {
	    --this->_M_impl._M_finish._M_cur;
	    _Alloc_traits::destroy(this->_M_impl,
				   this->_M_impl._M_finish._M_cur);
	  }
	else
	  _M_pop_back_aux();
      }

#if __cplusplus >= 201103L
      /**
       *  @brief  Inserts an object in %deque before specified iterator.
       *  @param  __position  A const_iterator into the %deque.
       *  @param  __args  Arguments.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert an object of type T constructed
       *  with T(std::forward<Args>(args)...) before the specified location.
       */
      template<typename... _Args>
	iterator
	emplace(const_iterator __position, _Args&&... __args);

      /**
       *  @brief  Inserts given value into %deque before specified iterator.
       *  @param  __position  A const_iterator into the %deque.
       *  @param  __x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a copy of the given value before the
       *  specified location.
       */
      iterator
      insert(const_iterator __position, const value_type& __x);
#else
      /**
       *  @brief  Inserts given value into %deque before specified iterator.
       *  @param  __position  An iterator into the %deque.
       *  @param  __x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a copy of the given value before the
       *  specified location.
       */
      iterator
      insert(iterator __position, const value_type& __x);
#endif

#if __cplusplus >= 201103L
      /**
       *  @brief  Inserts given rvalue into %deque before specified iterator.
       *  @param  __position  A const_iterator into the %deque.
       *  @param  __x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a copy of the given rvalue before the
       *  specified location.
       */
      iterator
      insert(const_iterator __position, value_type&& __x)
      { return emplace(__position, std::move(__x)); }

      /**
       *  @brief  Inserts an initializer list into the %deque.
       *  @param  __p  An iterator into the %deque.
       *  @param  __l  An initializer_list.
       *
       *  This function will insert copies of the data in the
       *  initializer_list @a __l into the %deque before the location
       *  specified by @a __p.  This is known as <em>list insert</em>.
       */
      iterator
      insert(const_iterator __p, initializer_list<value_type> __l)
      {
	auto __offset = __p - cbegin();
	_M_range_insert_aux(__p._M_const_cast(), __l.begin(), __l.end(),
			    std::random_access_iterator_tag());
	return begin() + __offset;
      }
#endif

#if __cplusplus >= 201103L
      /**
       *  @brief  Inserts a number of copies of given data into the %deque.
       *  @param  __position  A const_iterator into the %deque.
       *  @param  __n  Number of elements to be inserted.
       *  @param  __x  Data to be inserted.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert a specified number of copies of the given
       *  data before the location specified by @a __position.
       */
      iterator
      insert(const_iterator __position, size_type __n, const value_type& __x)
      {
	difference_type __offset = __position - cbegin();
	_M_fill_insert(__position._M_const_cast(), __n, __x);
	return begin() + __offset;
      }
#else
      /**
       *  @brief  Inserts a number of copies of given data into the %deque.
       *  @param  __position  An iterator into the %deque.
       *  @param  __n  Number of elements to be inserted.
       *  @param  __x  Data to be inserted.
       *
       *  This function will insert a specified number of copies of the given
       *  data before the location specified by @a __position.
       */
      void
      insert(iterator __position, size_type __n, const value_type& __x)
      { _M_fill_insert(__position, __n, __x); }
#endif

#if __cplusplus >= 201103L
      /**
       *  @brief  Inserts a range into the %deque.
       *  @param  __position  A const_iterator into the %deque.
       *  @param  __first  An input iterator.
       *  @param  __last   An input iterator.
       *  @return  An iterator that points to the inserted data.
       *
       *  This function will insert copies of the data in the range
       *  [__first,__last) into the %deque before the location specified
       *  by @a __position.  This is known as <em>range insert</em>.
       */
      template<typename _InputIterator,
	       typename = std::_RequireInputIter<_InputIterator>>
	iterator
	insert(const_iterator __position, _InputIterator __first,
	       _InputIterator __last)
	{
	  difference_type __offset = __position - cbegin();
	  _M_insert_dispatch(__position._M_const_cast(),
			     __first, __last, __false_type());
	  return begin() + __offset;
	}
#else
      /**
       *  @brief  Inserts a range into the %deque.
       *  @param  __position  An iterator into the %deque.
       *  @param  __first  An input iterator.
       *  @param  __last   An input iterator.
       *
       *  This function will insert copies of the data in the range
       *  [__first,__last) into the %deque before the location specified
       *  by @a __position.  This is known as <em>range insert</em>.
       */
      template<typename _InputIterator>
	void
	insert(iterator __position, _InputIterator __first,
	       _InputIterator __last)
	{
	  // Check whether it's an integral type.  If so, it's not an iterator.
	  typedef typename std::__is_integer<_InputIterator>::__type _Integral;
	  _M_insert_dispatch(__position, __first, __last, _Integral());
	}
#endif

      /**
       *  @brief  Remove element at given position.
       *  @param  __position  Iterator pointing to element to be erased.
       *  @return  An iterator pointing to the next element (or end()).
       *
       *  This function will erase the element at the given position and thus
       *  shorten the %deque by one.
       *
       *  The user is cautioned that
       *  this function only erases the element, and that if the element is
       *  itself a pointer, the pointed-to memory is not touched in any way.
       *  Managing the pointer is the user's responsibility.
       */
      iterator
#if __cplusplus >= 201103L
      erase(const_iterator __position)
#else
      erase(iterator __position)
#endif
      { return _M_erase(__position._M_const_cast()); }

      /**
       *  @brief  Remove a range of elements.
       *  @param  __first  Iterator pointing to the first element to be erased.
       *  @param  __last  Iterator pointing to one past the last element to be
       *                erased.
       *  @return  An iterator pointing to the element pointed to by @a last
       *           prior to erasing (or end()).
       *
       *  This function will erase the elements in the range
       *  [__first,__last) and shorten the %deque accordingly.
       *
       *  The user is cautioned that
       *  this function only erases the elements, and that if the elements
       *  themselves are pointers, the pointed-to memory is not touched in any
       *  way.  Managing the pointer is the user's responsibility.
       */
      iterator
#if __cplusplus >= 201103L
      erase(const_iterator __first, const_iterator __last)
#else
      erase(iterator __first, iterator __last)
#endif
      { return _M_erase(__first._M_const_cast(), __last._M_const_cast()); }

      /**
       *  @brief  Swaps data with another %deque.
       *  @param  __x  A %deque of the same element and allocator types.
       *
       *  This exchanges the elements between two deques in constant time.
       *  (Four pointers, so it should be quite fast.)
       *  Note that the global std::swap() function is specialized such that
       *  std::swap(d1,d2) will feed to this function.
       *
       *  Whether the allocators are swapped depends on the allocator traits.
       */
      void
      swap(deque& __x) _GLIBCXX_NOEXCEPT
      {
#if __cplusplus >= 201103L
	__glibcxx_assert(_Alloc_traits::propagate_on_container_swap::value
			 || _M_get_Tp_allocator() == __x._M_get_Tp_allocator());
#endif
	_M_impl._M_swap_data(__x._M_impl);
	_Alloc_traits::_S_on_swap(_M_get_Tp_allocator(),
				  __x._M_get_Tp_allocator());
      }

      /**
       *  Erases all the elements.  Note that this function only erases the
       *  elements, and that if the elements themselves are pointers, the
       *  pointed-to memory is not touched in any way.  Managing the pointer is
       *  the user's responsibility.
       */
      void
      clear() _GLIBCXX_NOEXCEPT
      { _M_erase_at_end(begin()); }

    protected:
      // Internal constructor functions follow.

      // called by the range constructor to implement [23.1.1]/9

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 438. Ambiguity in the "do the right thing" clause
      template<typename _Integer>
	void
	_M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
	{
	  _M_initialize_map(static_cast<size_type>(__n));
	  _M_fill_initialize(__x);
	}

      // called by the range constructor to implement [23.1.1]/9
      template<typename _InputIterator>
	void
	_M_initialize_dispatch(_InputIterator __first, _InputIterator __last,
			       __false_type)
	{
	  _M_range_initialize(__first, __last,
			      std::__iterator_category(__first));
	}

      // called by the second initialize_dispatch above
      //@{
      /**
       *  @brief Fills the deque with whatever is in [first,last).
       *  @param  __first  An input iterator.
       *  @param  __last  An input iterator.
       *  @return   Nothing.
       *
       *  If the iterators are actually forward iterators (or better), then the
       *  memory layout can be done all at once.  Else we move forward using
       *  push_back on each value from the iterator.
       */
      template<typename _InputIterator>
	void
	_M_range_initialize(_InputIterator __first, _InputIterator __last,
			    std::input_iterator_tag);

      // called by the second initialize_dispatch above
      template<typename _ForwardIterator>
	void
	_M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
			    std::forward_iterator_tag);
      //@}

      /**
       *  @brief Fills the %deque with copies of value.
       *  @param  __value  Initial value.
       *  @return   Nothing.
       *  @pre _M_start and _M_finish have already been initialized,
       *  but none of the %deque's elements have yet been constructed.
       *
       *  This function is called only when the user provides an explicit size
       *  (with or without an explicit exemplar value).
       */
      void
      _M_fill_initialize(const value_type& __value);

#if __cplusplus >= 201103L
      // called by deque(n).
      void
      _M_default_initialize();
#endif

      // Internal assign functions follow.  The *_aux functions do the actual
      // assignment work for the range versions.

      // called by the range assign to implement [23.1.1]/9

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 438. Ambiguity in the "do the right thing" clause
      template<typename _Integer>
	void
	_M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
	{ _M_fill_assign(__n, __val); }

      // called by the range assign to implement [23.1.1]/9
      template<typename _InputIterator>
	void
	_M_assign_dispatch(_InputIterator __first, _InputIterator __last,
			   __false_type)
	{ _M_assign_aux(__first, __last, std::__iterator_category(__first)); }

      // called by the second assign_dispatch above
      template<typename _InputIterator>
	void
	_M_assign_aux(_InputIterator __first, _InputIterator __last,
		      std::input_iterator_tag);

      // called by the second assign_dispatch above
      template<typename _ForwardIterator>
	void
	_M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
		      std::forward_iterator_tag)
	{
	  const size_type __len = std::distance(__first, __last);
	  if (__len > size())
	    {
	      _ForwardIterator __mid = __first;
	      std::advance(__mid, size());
	      std::copy(__first, __mid, begin());
	      _M_range_insert_aux(end(), __mid, __last,
				  std::__iterator_category(__first));
	    }
	  else
	    _M_erase_at_end(std::copy(__first, __last, begin()));
	}

      // Called by assign(n,t), and the range assign when it turns out
      // to be the same thing.
      void
      _M_fill_assign(size_type __n, const value_type& __val)
      {
	if (__n > size())
	  {
	    std::fill(begin(), end(), __val);
	    _M_fill_insert(end(), __n - size(), __val);
	  }
	else
	  {
	    _M_erase_at_end(begin() + difference_type(__n));
	    std::fill(begin(), end(), __val);
	  }
      }

      //@{
      /// Helper functions for push_* and pop_*.
#if __cplusplus < 201103L
      void _M_push_back_aux(const value_type&);

      void _M_push_front_aux(const value_type&);
#else
      template<typename... _Args>
	void _M_push_back_aux(_Args&&... __args);

      template<typename... _Args>
	void _M_push_front_aux(_Args&&... __args);
#endif

      void _M_pop_back_aux();

      void _M_pop_front_aux();
      //@}

      // Internal insert functions follow.  The *_aux functions do the actual
      // insertion work when all shortcuts fail.

      // called by the range insert to implement [23.1.1]/9

      // _GLIBCXX_RESOLVE_LIB_DEFECTS
      // 438. Ambiguity in the "do the right thing" clause
      template<typename _Integer>
	void
	_M_insert_dispatch(iterator __pos,
			   _Integer __n, _Integer __x, __true_type)
	{ _M_fill_insert(__pos, __n, __x); }

      // called by the range insert to implement [23.1.1]/9
      template<typename _InputIterator>
	void
	_M_insert_dispatch(iterator __pos,
			   _InputIterator __first, _InputIterator __last,
			   __false_type)
	{
	  _M_range_insert_aux(__pos, __first, __last,
			      std::__iterator_category(__first));
	}

      // called by the second insert_dispatch above
      template<typename _InputIterator>
	void
	_M_range_insert_aux(iterator __pos, _InputIterator __first,
			    _InputIterator __last, std::input_iterator_tag);

      // called by the second insert_dispatch above
      template<typename _ForwardIterator>
	void
	_M_range_insert_aux(iterator __pos, _ForwardIterator __first,
			    _ForwardIterator __last, std::forward_iterator_tag);

      // Called by insert(p,n,x), and the range insert when it turns out to be
      // the same thing.  Can use fill functions in optimal situations,
      // otherwise passes off to insert_aux(p,n,x).
      void
      _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);

      // called by insert(p,x)
#if __cplusplus < 201103L
      iterator
      _M_insert_aux(iterator __pos, const value_type& __x);
#else
      template<typename... _Args>
	iterator
	_M_insert_aux(iterator __pos, _Args&&... __args);
#endif

      // called by insert(p,n,x) via fill_insert
      void
      _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);

      // called by range_insert_aux for forward iterators
      template<typename _ForwardIterator>
	void
	_M_insert_aux(iterator __pos,
		      _ForwardIterator __first, _ForwardIterator __last,
		      size_type __n);


      // Internal erase functions follow.

      void
      _M_destroy_data_aux(iterator __first, iterator __last);

      // Called by ~deque().
      // NB: Doesn't deallocate the nodes.
      template<typename _Alloc1>
	void
	_M_destroy_data(iterator __first, iterator __last, const _Alloc1&)
	{ _M_destroy_data_aux(__first, __last); }

      void
      _M_destroy_data(iterator __first, iterator __last,
		      const std::allocator<_Tp>&)
      {
	if (!__has_trivial_destructor(value_type))
	  _M_destroy_data_aux(__first, __last);
      }

      // Called by erase(q1, q2).
      void
      _M_erase_at_begin(iterator __pos)
      {
	_M_destroy_data(begin(), __pos, _M_get_Tp_allocator());
	_M_destroy_nodes(this->_M_impl._M_start._M_node, __pos._M_node);
	this->_M_impl._M_start = __pos;
      }

      // Called by erase(q1, q2), resize(), clear(), _M_assign_aux,
      // _M_fill_assign, operator=.
      void
      _M_erase_at_end(iterator __pos)
      {
	_M_destroy_data(__pos, end(), _M_get_Tp_allocator());
	_M_destroy_nodes(__pos._M_node + 1,
			 this->_M_impl._M_finish._M_node + 1);
	this->_M_impl._M_finish = __pos;
      }

      iterator
      _M_erase(iterator __pos);

      iterator
      _M_erase(iterator __first, iterator __last);

#if __cplusplus >= 201103L
      // Called by resize(sz).
      void
      _M_default_append(size_type __n);

      bool
      _M_shrink_to_fit();
#endif

      //@{
      /// Memory-handling helpers for the previous internal insert functions.
      iterator
      _M_reserve_elements_at_front(size_type __n)
      {
	const size_type __vacancies = this->_M_impl._M_start._M_cur
				      - this->_M_impl._M_start._M_first;
	if (__n > __vacancies)
	  _M_new_elements_at_front(__n - __vacancies);
	return this->_M_impl._M_start - difference_type(__n);
      }

      iterator
      _M_reserve_elements_at_back(size_type __n)
      {
	const size_type __vacancies = (this->_M_impl._M_finish._M_last
				       - this->_M_impl._M_finish._M_cur) - 1;
	if (__n > __vacancies)
	  _M_new_elements_at_back(__n - __vacancies);
	return this->_M_impl._M_finish + difference_type(__n);
      }

      void
      _M_new_elements_at_front(size_type __new_elements);

      void
      _M_new_elements_at_back(size_type __new_elements);
      //@}


      //@{
      /**
       *  @brief Memory-handling helpers for the major %map.
       *
       *  Makes sure the _M_map has space for new nodes.  Does not
       *  actually add the nodes.  Can invalidate _M_map pointers.
       *  (And consequently, %deque iterators.)
       */
      void
      _M_reserve_map_at_back(size_type __nodes_to_add = 1)
      {
	if (__nodes_to_add + 1 > this->_M_impl._M_map_size
	    - (this->_M_impl._M_finish._M_node - this->_M_impl._M_map))
	  _M_reallocate_map(__nodes_to_add, false);
      }

      void
      _M_reserve_map_at_front(size_type __nodes_to_add = 1)
      {
	if (__nodes_to_add > size_type(this->_M_impl._M_start._M_node
				       - this->_M_impl._M_map))
	  _M_reallocate_map(__nodes_to_add, true);
      }

      void
      _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
      //@}

#if __cplusplus >= 201103L
      // Constant-time, nothrow move assignment when source object's memory
      // can be moved because the allocators are equal.
      void
      _M_move_assign1(deque&& __x, /* always equal: */ true_type) noexcept
      {
	this->_M_impl._M_swap_data(__x._M_impl);
	__x.clear();
	std::__alloc_on_move(_M_get_Tp_allocator(), __x._M_get_Tp_allocator());
      }

      // When the allocators are not equal the operation could throw, because
      // we might need to allocate a new map for __x after moving from it
      // or we might need to allocate new elements for *this.
      void
      _M_move_assign1(deque&& __x, /* always equal: */ false_type)
      {
	constexpr bool __move_storage =
	  _Alloc_traits::_S_propagate_on_move_assign();
	_M_move_assign2(std::move(__x), __bool_constant<__move_storage>());
      }

      // Destroy all elements and deallocate all memory, then replace
      // with elements created from __args.
      template<typename... _Args>
      void
      _M_replace_map(_Args&&... __args)
      {
	// Create new data first, so if allocation fails there are no effects.
	deque __newobj(std::forward<_Args>(__args)...);
	// Free existing storage using existing allocator.
	clear();
	_M_deallocate_node(*begin()._M_node); // one node left after clear()
	_M_deallocate_map(this->_M_impl._M_map, this->_M_impl._M_map_size);
	this->_M_impl._M_map = nullptr;
	this->_M_impl._M_map_size = 0;
	// Take ownership of replacement memory.
	this->_M_impl._M_swap_data(__newobj._M_impl);
      }

      // Do move assignment when the allocator propagates.
      void
      _M_move_assign2(deque&& __x, /* propagate: */ true_type)
      {
	// Make a copy of the original allocator state.
	auto __alloc = __x._M_get_Tp_allocator();
	// The allocator propagates so storage can be moved from __x,
	// leaving __x in a valid empty state with a moved-from allocator.
	_M_replace_map(std::move(__x));
	// Move the corresponding allocator state too.
	_M_get_Tp_allocator() = std::move(__alloc);
      }

      // Do move assignment when it may not be possible to move source
      // object's memory, resulting in a linear-time operation.
      void
      _M_move_assign2(deque&& __x, /* propagate: */ false_type)
      {
	if (__x._M_get_Tp_allocator() == this->_M_get_Tp_allocator())
	  {
	    // The allocators are equal so storage can be moved from __x,
	    // leaving __x in a valid empty state with its current allocator.
	    _M_replace_map(std::move(__x), __x.get_allocator());
	  }
	else
	  {
	    // The rvalue's allocator cannot be moved and is not equal,
	    // so we need to individually move each element.
	    _M_assign_aux(std::__make_move_if_noexcept_iterator(__x.begin()),
			  std::__make_move_if_noexcept_iterator(__x.end()),
			  std::random_access_iterator_tag());
	    __x.clear();
	  }
      }
#endif
    };

#if __cpp_deduction_guides >= 201606
  template<typename _InputIterator, typename _ValT
	     = typename iterator_traits<_InputIterator>::value_type,
	   typename _Allocator = allocator<_ValT>,
	   typename = _RequireInputIter<_InputIterator>,
	   typename = _RequireAllocator<_Allocator>>
    deque(_InputIterator, _InputIterator, _Allocator = _Allocator())
      -> deque<_ValT, _Allocator>;
#endif

  /**
   *  @brief  Deque equality comparison.
   *  @param  __x  A %deque.
   *  @param  __y  A %deque of the same type as @a __x.
   *  @return  True iff the size and elements of the deques are equal.
   *
   *  This is an equivalence relation.  It is linear in the size of the
   *  deques.  Deques are considered equivalent if their sizes are equal,
   *  and if corresponding elements compare equal.
  */
  template<typename _Tp, typename _Alloc>
    inline bool
    operator==(const deque<_Tp, _Alloc>& __x,
                         const deque<_Tp, _Alloc>& __y)
    { return __x.size() == __y.size()
	     && std::equal(__x.begin(), __x.end(), __y.begin()); }

  /**
   *  @brief  Deque ordering relation.
   *  @param  __x  A %deque.
   *  @param  __y  A %deque of the same type as @a __x.
   *  @return  True iff @a x is lexicographically less than @a __y.
   *
   *  This is a total ordering relation.  It is linear in the size of the
   *  deques.  The elements must be comparable with @c <.
   *
   *  See std::lexicographical_compare() for how the determination is made.
  */
  template<typename _Tp, typename _Alloc>
    inline bool
    operator<(const deque<_Tp, _Alloc>& __x,
	      const deque<_Tp, _Alloc>& __y)
    { return std::lexicographical_compare(__x.begin(), __x.end(),
					  __y.begin(), __y.end()); }

  /// Based on operator==
  template<typename _Tp, typename _Alloc>
    inline bool
    operator!=(const deque<_Tp, _Alloc>& __x,
	       const deque<_Tp, _Alloc>& __y)
    { return !(__x == __y); }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator>(const deque<_Tp, _Alloc>& __x,
	      const deque<_Tp, _Alloc>& __y)
    { return __y < __x; }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator<=(const deque<_Tp, _Alloc>& __x,
	       const deque<_Tp, _Alloc>& __y)
    { return !(__y < __x); }

  /// Based on operator<
  template<typename _Tp, typename _Alloc>
    inline bool
    operator>=(const deque<_Tp, _Alloc>& __x,
	       const deque<_Tp, _Alloc>& __y)
    { return !(__x < __y); }

  /// See std::deque::swap().
  template<typename _Tp, typename _Alloc>
    inline void
    swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
    _GLIBCXX_NOEXCEPT_IF(noexcept(__x.swap(__y)))
    { __x.swap(__y); }

#undef _GLIBCXX_DEQUE_BUF_SIZE

_GLIBCXX_END_NAMESPACE_CONTAINER
_GLIBCXX_END_NAMESPACE_VERSION
} // namespace std

#endif /* _STL_DEQUE_H */

如果你觉得这篇文章对你有帮助,不妨动动手指给点赞收藏加转发,给鄃鳕一个大大的关注你们的每一次支持都将转化为我前进的动力!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/79281.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

ansible 修改远程主机nginx配置文件

安装ansible brew install ansible 或者 pip3 install ansible 添加远程主机 设置秘钥 mac登录远程主机 ssh -p 5700 root192.168.123.211 ssh localhost #设置双机信任 ssh-kyegen -t rsa #设置主机两边的ssh配置文件 vi /etc/ssh/sshd_config/ PermitRootL…

K8S核心组件etcd详解(下)

1 k8s如何使用etcd 在k8s中所有对象的manifest都需要保存到某个地方&#xff0c;这样他们的manifest在api server重启和失败的时候才不会丢失。 只有api server能访问etcd&#xff0c;其它组件只能间接访问etcd的好处是 增强乐观锁系统及验证系统的健壮性 方便后续存储的替换…

C++新经典03--共用体、枚举类型与typedef

共用体 共用体&#xff0c;也叫联合&#xff0c;有时候需要把几种不同类型的变量存放到同一段内存单元&#xff0c;例如&#xff0c;把一个整型变量、一个字符型变量、一个字符数组放在同一个地址开始的内存单元中。这三个变量在内存中占的字节数不同&#xff0c;但它们都从同…

【LeetCode75】第三十一题 反转链表

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 最经典的链表题&#xff0c;没有之一&#xff01;&#xff01;&#xff01; 强烈建议直接把模板记住&#xff01;&#xff01;&#xf…

LeetCode150道面试经典题-- 环形链表(简单)

1.题目 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置&…

Python中import模块导入的实现原理

欢迎关注博主 Mindtechnist 或加入【Linux C/C/Python社区】一起探讨和分享Linux C/C/Python/Shell编程、机器人技术、机器学习、机器视觉、嵌入式AI相关领域的知识和技术。 Python中import模块导入的实现原理 什么是模块import搜索路径import导入模块的原理图书推荐 专栏&…

vue 数字递增(滚动从0到)

使用 html <Incremental :startVal"0" :endVal"1000" :duration"500" />js&#xff1a; import Incremental from /utils/num/numViewjs let lastTime 0 const prefixes webkit moz ms o.split( ) // 各浏览器前缀let requestAnimatio…

树莓派的自启动与桌面应用程序

目录 1 打开终端自启动 .bashrc 2 触发时机较早的开机自启动rc.local 3 桌面应用程序 4 触发时机较晚的的开机自启动 autostart 1 打开终端自启动 .bashrc .bashrc的程序也可以在开机时进行自启动&#xff0c;但是每一次打开终端时同样会运行一遍&#xff0c;所以只需…

5G科技防汛,助力守护一方平安

“立秋虽已至&#xff0c;炎夏尚还在”&#xff0c;受台风席卷以及季节性影响全国多地正面临强降水的严峻挑战。“落雨又顺秋&#xff0c;绵绵雨不休”&#xff0c;正值“七下八上” 防汛关键时期&#xff0c;贵州省水文水资源局已全面进入备战状态。 为确保及时响应做好防汛抢…

Eclipse如何设置快捷键

在eclopse设置注释行和取消注释行 // 打开eclipse&#xff0c;依次打开&#xff1a;Window -> Preferences -> General -> Key&#xff0c;

ARM64 程序调用标准

ARM64 程序调用标准 1 Machine Registers1.1 General-purpose Registers1.2 SIMD and Floating-Point Registers 2 Processes, Memory and the Stack2.1 Memory Addresses2.2 The Stack2.2.1 Universal stack constraints2.2.2 Stack constraints at a public interface 2.3 Th…

【Leetcode】98. 验证二叉搜索树

一、题目 1、题目描述 给你一个二叉树的根节点 root ,判断其是否是一个有效的二叉搜索树。 有效 二叉搜索树定义如下: 节点的左子树只包含 小于 当前节点的数。节点的右子树只包含 大于 当前节点的数。所有左子树和右子树自身必须也是二叉搜索树。示例1: 输入:root = …

Nevron 3DChart Crack,可视化界面在运行时可用

Nevron 3DChart Crack,可视化界面在运行时可用 3DChart使用OpenGL 3D图形引擎创建复杂的2D和3D图表&#xff0c;这些图表可以包含静态或动画图像。3DChart包括一个用于生成图表模板的独立应用程序和一个ASP服务器配置实用程序。该组件还包括一个专门设计用于与3DChart集成的工具…

阿里云服务器安装部署Docker使用教程

本文阿里云百科分享如何在云服务ECS实例上&#xff0c;部署并使用Docker。Docker是一款开源的应用容器引擎&#xff0c;具有可移植性、可扩展性、高安全性和可管理性等优势。开发者可将应用程序和依赖项打包到一个可移植的容器中&#xff0c;快速发布到Linux机器上并实现虚拟化…

每日汇评:黄金在 200 日移动平均线附近似乎很脆弱,关注美国零售销售

1、金价预计将巩固其近期跌势&#xff0c;至 6 月初以来的最低水平&#xff1b; 2、对美联储再次加息的押注继续限制了贵金属的上涨&#xff1b; 3、金融市场现在期待美国零售销售报告带来一些有意义的推动&#xff1b; 周二金价难以获得任何有意义的牵引力&#xff0c;并在…

OpenCV-Python中的图像处理-GrabCut算法交互式前景提取

OpenCV-Python中的图像处理-GrabCut算法交互式前景提取 Python-OpenCV中的图像处理-GrabCut算法交互式前景提取 Python-OpenCV中的图像处理-GrabCut算法交互式前景提取 cv2.grabCut(img: Mat, mask: typing.Optional[Mat], rect, bgdModel, fgdModel, iterCount, mode…) img…

2011年下半年 软件设计师 上午试卷2

博主介绍&#xff1a;✌全网粉丝3W&#xff0c;全栈开发工程师&#xff0c;从事多年软件开发&#xff0c;在大厂呆过。持有软件中级、六级等证书。可提供微服务项目搭建与毕业项目实战&#xff0c;博主也曾写过优秀论文&#xff0c;查重率极低&#xff0c;在这方面有丰富的经验…

Nginx搭建本地服务器,无需购买服务器即可测试vue项目打包后的效果

一.前言 本文是在windows环境&#xff08;Linux环境下其实也大同小异&#xff09;下基于Nginx实现搭建本地服务器&#xff0c;手把手教你部署vue项目。 二.Nginx入门 1&#xff09;下载安装 进入Nginx官网下载&#xff0c;选择stable版本下的windows版本下载即可 2&#xff09;…

docker-compose redis 一直启动失败

环境&#xff1a; centos 8.x 背景 使用docker-compose 来启动redis docker-compose.yml 如下&#xff1a; version: 3.3 services:redis:image: redis:latestrestart: alwayscontainer_name: redisports:- 6379:6379volumes:- ./data:/redis/data- ./redis.conf:/redis/re…

【C++】set/multiset容器

1.set基本概念 #include <iostream> using namespace std;//set容器构造和赋值 #include<set>//遍历 void printSet(const set<int>& st) {for (set<int>::const_iterator it st.begin(); it ! st.end(); it){cout << *it << " …