AI绘画 Stable Diffusion图像的脸部细节控制——采样器全解析

大家好,我是画画的小强

我们在运用AI绘画 Stable Diffusion 这一功能强大的AI绘图工具时,我们往往会发现自己对提示词的使用还不够充分。在这种情形下,我们应当如何调整自己的策略,以便更加精确、全面地塑造出理想的人物形象呢?举例来说,假设我们输入的是:

a girl in dress walks down a country road,vision,front view,audience oriented,

在这里插入图片描述

图片效果总是不尽人意在这里插入图片描述

我们批量四个之后,除去背对的图片,我们可以看到其余三个的面部非常的奇怪

在这里插入图片描述

该如何快速处理呢?

原因分析

首先我们要了解脸部崩坏的原因

为什么在使用Stable Diffusion生成全身图像时,脸部细节往往不够精细?
  1. 问题一:图像分辨率和细节处理 在生成全身图像的过程中,模型会将计算资源集中于整个身体的描绘,包括服装、姿势和背景等要素。脸部通常仅占整个图像的一小部分,相对地,分配给脸部细节处理的资源就显得有限。这导致在最终生成的全身图像中,脸部的细节可能不如半身图像那样清晰。

  2. 问题二:训练数据的偏差效应 如果您的数据集中包含了大量高清的半身像而非全身像,Stable Diffusion模型可能会倾向于专注于处理这些半身像。由于全身像包含更多的图像元素和更高的维度,模型在绘制时需要投入更多的计算能力。因此,它在半身像的处理上可能会更有优势。

  3. 问题三:生成算法的局限性 当前的生成算法在处理尺寸不同的对象时,可能存在一些限制。例如,脸部区域是一个复杂且细节丰富的部分,而当算法处理全身图像时,可能难以保持对脸部细节质量的关注。

  4. 问题四:计算资源的限制 要生成一个特定尺寸的图像(如320x240像素),模型需要进行一系列运算,包括模板提取、特征表示、搜索和匹配等。这些都需要计算资源,并且在有限的资源下,对图像不同部分的优化可能会增加计算成本。因此,对于全身图像,可能对脸部细节质量有所优化,或者简化了处理流程。

解决策略

  1. 利用更高分辨率图像进行训练 通过使用更高分辨率的图像来进行训练,模型可以学习更多细节,这对提升生成照片中脸部的细节是有益的。但是更高的分辨率会导致人物拉长畸形,大大降低了质量

  2. 在生成全身图像时采用引导技术 在生成全身图像时,尝试应用引导技术(如注意力机制),这样可以让模型更加专注于脸部区域,从而提高对脸部细节的关注。

在这里插入图片描述

我们可以看到即使使用了prompt之后,Stable Diffusion似乎听不懂一样只是对面部加了一个渲染,但并没有达到预期的效果
在这里插入图片描述

局部重绘

在这里插入图片描述

我们可以直接点击这里到局部重绘,在选择重绘内容之后,如下:
在这里插入图片描述

提示词都不用变化,只需要把负面词加上即可

(worst quality, low quality:1.4),monochrome,zombie,bad_prompt_version2-neg,easynegative (1),(worst quality, low quality:1.4),(depth of field, blurry:1.2),(greyscale, monochrome:1.1),3D face,cropped,lowres,text,(nsfw:1.3),(worst quality:2),(low quality:2),(normal quality:2),normal quality,((grayscale)),skin spots,acnes,skin blemishes,age spot,(ugly:1.331),(duplicate:1.331),(morbid:1.21),(mutilated:1.21),(tranny:1.331),mutated hands,(poorly drawn hands:1.5),blurry,(bad anatomy:1.21),(bad proportions:1.331),extra limbs,(disfigured:1.331),(missing arms:1.331),(extra legs:1.331),(fused fingers:1.61051),(too many fingers:1.61051),(unclear eyes:1.331),lowers,bad hands,missing fingers,extra digit,bad hands,missing fingers,(((extra arms and legs))),

  1. 调整参数设置 通过增加迭代次数或采用不同的采样方法,可以提高生成图像的质量,其中包括脸部细节。

在这里插入图片描述

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

采样器

在探讨Stable Diffusion的核心技术中,采样器扮演着至关重要的角色。本文将深入分析几种主要的采样器,以及它们各自的特点和应用场景,为读者提供更全面的了解。首先,我们来看Euler采样器。这是一个基础而简洁的工具,它采用欧拉方法来进行迭代操作。欧拉方法本质上是一种高效的数值积分技术,专门用于求解非线性常微分方程。当应用于图像生成时,Euler采样器通过迭代去噪,可以有效地去除图像中的噪声。尽管速度快,Euler采样器也可能导致一些图像细节受损,因为过度的去噪可能会丢失一些微妙的边缘信息。

接下来是Euler a采样器,作为Euler的改进版,它增加了额外的参数用于控制去噪过程。这些参数的引入使得用户能够在去噪过程中拥有更多的自主权,从而有望获得更高的图像质量。这种改进带来了一系列潜在的优势:如更平滑的采样体验、更精细的噪声控制以及更优的整体图像效果。转向Heun采样器,它的设计理念源自Heun方法,这是一种结合了Euler和Midpoint方法的创新技术。Heun方法同样基于数值积分原理,专注于求解常微分方程,并在Stable Diffusion中用于迭代去噪过程。相较于Euler,Heun采样器展现出更加平滑细腻的采样过程,同时提供更为卓越的图像质量。

在这里插入图片描述

DPM2采样器则是一种基于物理模型的工具。它采用了“去噪扩散概率模型”(DPM)技术,这一模型能够在去噪过程中优化控制噪声水平,进而生成更高质量的图像。DPM2的强大之处在于它可以精确调整噪声水平,避免了传统去噪方法中常见的“过噪”问题。

DPM2 a是DPM2采样器的又一次重大升级,它继承了Euler a的特性,并引入了更多的参数来进一步控制去噪流程。这些新参数允许用户对去噪过程进行精细的控制,有助于提升最终图像的质量。

DPM fast是DPM系列的另一快速响应选项。它通过降低去噪迭代次数并简化过程的方式,牺牲了一定的图像质量以换取生成速度的提升。尽管如此,DPM fast仍然保留了许多吸引人的特点,包括快速的生成效率和更短的处理时间。

DPM adaptive是DPM2采样器的自适应变体。它具备动态调整采样策略的能力,能够根据图像的复杂度实时调整采样参数。这样做的目的是为了平衡高生成速度和高质量输出之间的关系,确保生成的图像既快又好。

Restart采样器是一种利用重启技术的新型采样器。当图像质量开始出现下降趋势时,Restart采样器会重新开始整个去噪过程,以恢复图像的原有质量,防止其进一步恶化。

在这里插入图片描述

DDIM采样器基于迭代去噪技术,使用“去噪扩散迭代模型”(DDIM)。这项技术能够生成非常高质量的图像,但由于它的迭代特性,生成速度相对较慢。

PLMS采样器是DDIM采样器的改良版,它采用了“预条件的Legendre多项式去噪”(PLMS)技术。这种方法不仅能提供更好的图像质量,还能在生成速度上略胜一筹,与DDIM形成鲜明对比。

UniPC采样器基于统一概率耦合,采用“统一概率耦合”技术实现高质量图像输出。UniPC虽然在图像质量方面表现出色,但其复杂性和迭代特性导致了较慢的生成速度。

LCM采样器则基于拉普拉斯耦合模型,运用“拉普拉斯耦合模型”技术。LCM同样能够产出非常高品质的图像,但由于其结构的复杂性及迭代特性,生成速度也相应受到影响。

DPM++ 2M采样器是DPM2的进一步改进版,它引入了许多额外的去噪步骤和参数,旨在提升图像质量。特别值得一提的是,DPM++ 2M在去噪概率模型方面做出了重要的更新。

DPM++ SDE采样器是DPM2的基于随机微分方程(SDE)的改进版本。SDE技术的引入为图像生成提供了更加稳定和高质的结果。

DPM++ 2M SDE采样器是DPM++ 2M与DPM++ SDE结合的产物。它融合了两种技术的优势,为用户带来了更佳的图像质量。

DPM++ 2M SDE Heun采样器是DPM++ 2M SDE的进一步升级,它使用Heun方法进行迭代,结合了去噪扩散概率模型和Heun方法的共同优点。

DPM++ 2S a采样器是DPM++ 2M的最新版本,它增加了额外参数来精细控制去噪过程。这些新增的控制参数允许用户在去噪过程中拥有更多选择,有望获得更加精细和高质量的图像。

最后,我们来看看DPM++ 3M SDE采样器。它是DPM++ 2M SDE采样器的第三代进化版,引入了更多的去噪步骤和参数以追求更高的图像质量。DPM++ 3M SDE的目标是在保持前两代产品优点的同时,进一步提升性能和图像质量,为用户提供更加流畅和精细的图像生成过程。

在这里插入图片描述

总结

在当今这个视觉至上的时代,无论是艺术创作、广告宣传还是社交媒体分享,高质量的图像都是吸引观众、传递信息的关键。通过上述介绍的解决策略和技术改进方法,我们不仅能够艺术地掌控人物形象,还能更好地运用Stable Diffusion采样器,这是图像生成领域的一大进步。艺术地掌控人物形象,不仅需要我们有独到的审美眼光,还需要我们掌握相关的技术手段。从化妆造型、服饰搭配到光影效果、后期处理,每一个环节都至关重要。通过上述介绍,我们了解到如何通过细节的调整,让人物形象更加立体、生动。

在这里插入图片描述

而Stable Diffusion采样器的运用,则是图像生成技术的又一次飞跃。它通过算法模拟出自然、逼真的图像效果,大大提高了图像生成的质量和效率。通过上述介绍,我们了解到如何通过调整参数、优化算法,让Stable Diffusion采样器更好地为我们服务。

感兴趣的小伙伴,赠送全套AIGC学习资料,包含AI绘画、AI人工智能等前沿科技教程和软件工具,具体看这里。

AIGC技术的未来发展前景广阔,随着人工智能技术的不断发展,AIGC技术也将不断提高。未来,AIGC技术将在游戏和计算领域得到更广泛的应用,使游戏和计算系统具有更高效、更智能、更灵活的特性。同时,AIGC技术也将与人工智能技术紧密结合,在更多的领域得到广泛应用,对程序员来说影响至关重要。未来,AIGC技术将继续得到提高,同时也将与人工智能技术紧密结合,在更多的领域得到广泛应用。

在这里插入图片描述

一、AIGC所有方向的学习路线

AIGC所有方向的技术点做的整理,形成各个领域的知识点汇总,它的用处就在于,你可以按照下面的知识点去找对应的学习资源,保证自己学得较为全面。

在这里插入图片描述

在这里插入图片描述

二、AIGC必备工具

工具都帮大家整理好了,安装就可直接上手!
在这里插入图片描述

三、最新AIGC学习笔记

当我学到一定基础,有自己的理解能力的时候,会去阅读一些前辈整理的书籍或者手写的笔记资料,这些笔记详细记载了他们对一些技术点的理解,这些理解是比较独到,可以学到不一样的思路。
在这里插入图片描述
在这里插入图片描述

四、AIGC视频教程合集

观看全面零基础学习视频,看视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

在这里插入图片描述

五、实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

若有侵权,请联系删除

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/792617.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Python 神器:wxauto 库——解锁微信自动化的无限可能

📝个人主页🌹:誓则盟约 ⏩收录专栏⏪:机器学习 🤡往期回顾🤡:“探索机器学习的多面世界:从理论到应用与未来展望” 🌹🌹期待您的关注 🌹&#x1f…

Mac的系统数据怎么删除 cleanmymac会乱删东西吗 cleanmymac有用吗

作为一款专业级的苹果电脑清理软件,CleanMyMac可以精准识别系统垃圾,有效防止Mac系统数据被误删。软件可以深入系统底层,清理无用的系统数据,优化苹果电脑设置,提升Mac系统性能。有关Mac的系统数据可以删吗&#xff0c…

电脑数据恢复篇:如何从电脑中恢复已删除的照片

按下 Shift Delete 后后悔了?想要恢复已删除的照片?好吧,如果是这样的话,你来对地方了。在本文中,我们将讨论如何从 PC 中恢复已删除的文件。 自从摄影的概念被提出以来,人们就对它着迷。以前&#xff0c…

NFS服务器、autofs自动挂载综合实验

综合实验 现有主机 node01 和 node02,完成如下需求: 1、在 node01 主机上提供 DNS 和 WEB 服务 2、dns 服务提供本实验所有主机名解析 3、web服务提供 www.rhce.com 虚拟主机 4、该虚拟主机的documentroot目录在 /nfs/rhce 目录 5、该目录由 node02 主机…

敏捷专家CSM认证培训内容概述(附2024年开班时间表)

敏捷专家CSM认证培训是专为希望在Scrum项目中担任Scrum Master角色的个人而设计的专业培训。CSM认证,全称Certified Scrum Master,是敏捷开发领域中备受认可的证书,由Scrum Alliance颁发。以下是对敏捷专家CSM认证培训的详细介绍:…

HNU-2024操作系统实验-Lab9-Shell

一、 实验目的 理解Shell程序的原理、底层逻辑和Shell依赖的数据结构等 在操作系统内核MiniEuler上实现一个可用的Shell程序 能够根据相关原理编写一条可用的Shell指令 二、 实验过程 首先从底层出发,实现Shell程序 1.在src/include目录下新建prt_shell.h头文…

Vue3 + Echarts堆叠折线图的tooltip不显示问题

问题介绍 使用Echarts在Vue3Vite项目中绘制堆叠折线图的的时候,tooltip总是不显示,经过很长时间的排查和修改,最后发现是在使用上有错误导致的。 错误图片展示 问题原因 由于Vue3底层使用proxy代理创建示例,使用其创建出来的实…

如何监控员工电脑行为?(其实不难,这种方法先码住!)

你的企业有没有面临以下几种问题: 这些问题,不仅影响企业员工的工作效率,更给企业数据带来不少的安全隐患。为了解决这些问题,很多企业采用监控员工电脑行为来解决当下的问题。 但我们需要注意的是,正确的监控不仅可以…

【Oracle】实验三 Oracle数据库的创建和管理

【实验目的】 掌握Oracle数据库的创建方法使用DBCA创建数据库在数据库中装入SCOTT用户及其表 【实验内容】 使用DBCA创建数据库,名为MYDB,找到其初始化文件(文本型和服务器型文件都要找到),查看各类默认位置并记录下来(包括物理文件所在目…

LabVIEW与ABB工业机器人据监控

​1. 前言 随着工业自动化的发展,工业机器人在制造业中的应用越来越广泛。为了实现对工业机器人的高效监控和控制,本文介绍了利用OPC(OLE for Process Control)服务器将ABB工业机器人与LabVIEW连接起来的解决方案。通过OPC服务器…

OpenCV和PIL进行前景提取

摘要 在图像处理和分析中,前景提取是一项关键技术,尤其是在计算机视觉和模式识别领域。本文介绍了一种结合OpenCV和PIL库的方法,实现在批量处理图像时有效提取前景并保留原始图像的EXIF数据。具体步骤包括从指定文件夹中读取图像&#xff0c…

TQZC706开发板教程:在ZC706+ADRV9009硬件平台运行ADI Linux

本教程使用2024-06-18的ADI镜像文件,创建ZC706ADRV9009的linux工程进行测试。 首先需要下载ADI的镜像文件下载地址如所示: https://wiki.analog.com/resources/tools-software/linux-software/adi-kuiper_images/release_notes#r2_patch_1 烧写完成后若…

JAVA毕业设计147—基于Java+Springboot的手机维修管理系统(源代码+数据库)

基于JavaSpringboot的手机维修管理系统(源代码数据库)147 一、系统介绍 本项目分为用户、管理员、维修员三种角色 1、用户: 注册、登录、新闻公告、售后申请、申请列表、意见反馈、个人信息、密码修改 2、管理员: 用户管理、用户管理、栏目管理、网…

SpringSecurity中文文档(Servlet Authorize HttpServletRequests)

Authorize HttpServletRequests SpringSecurity 允许您在请求级别对授权进行建模。例如,对于 Spring Security,可以说/admin 下的所有页面都需要一个权限,而其他所有页面只需要身份验证。 默认情况下,SpringSecurity 要求对每个…

6、Redis系统-数据结构-04-Hash

四、哈希表(Hashtable) 哈希表是一种高效的键值对数据结构,通过散列函数将键映射到表中的位置,实现快速的插入、删除和查找操作。Redis 广泛使用哈希表来实现 Hash 对象和数据库的键值存储。以下将从结构设计、哈希冲突与链式哈希…

快速测试electron环境是否安装成功

快速测试electron环境是否安装成功 测试代码正确运行的效果运行错误的效果v22.4.1 版本无法使用v20.15.1版本无法使用v18.20.4 版本无法使用 终极解决办法 测试代码 1.npx create-electron-app my-electron-app 2.cd my-electron-app 3.npm start 正确运行的效果 环境没问题…

Android系统设置kernel log level的方法

Android log相关文档索引: 使用ADB命令控制logcat日志本地存储功能-CSDN博客 Android系统通过属性设置来控制log输出的方案-CSDN博客 Android系统设置kernel log level的方法-CSDN博客 Android系统设置kernel log level的方法 背景 kernel log内容过多/过少会影…

oak相机使用oak官网方式标定

目录 一、depthai ROS驱动 一、depthai ROS驱动 (1)驱动下载地址:2. C 开发快速上手 — DepthAI Docs 0.3.0.0 documentation sudo apt install ./depthai_2.17.1_arm64.deb //运行 Python3 utilities/cam_test.py -mres 400 -cams rgb,m …

Wireshark 对 https 请求抓包并展示为明文

文章目录 1、目标2、环境准备3、Wireshark 基本使用4、操作步骤4.1、彻底关闭 Chrome 进程4.2、配置 SSLKEYLOGFILE [核心步骤]4.3、把文件路径配置到 Wireshark 指定位置4.4、在浏览器发起请求4.5、抓包配置4.6、过滤4.6.1、过滤域名 http.host contains "baidu.com4.6.2…

AIGC时代创意设计师从“创作”向“智作”升级

随着人工智能技术的飞速发展,AIGC(AI Generated Content,即人工智能生成内容)时代已经到来,为创意设计领域带来了前所未有的变革。在这一时代背景下,创意设计师们正经历着从传统的“创作”向“智作”的转型…