计算机竞赛 python opencv 深度学习 指纹识别算法实现

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 python opencv 深度学习 指纹识别算法实现

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:4分
  • 创新点:4分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 指纹识别方式

目前市面上有两种指纹识别,分别是光学式和电容式指纹识别。

2.1 电容式指纹识别

电容式指纹识别要比光学式的复杂得多,其原理是将压力感测、电容感测、热感测等感测器整合于一块芯片中,当指纹按压芯片表面时,内部电容感测器会根据指纹波峰与波谷而产生的电荷差(或是温差),形成指纹影像,再通过与算法内部的指纹库进行匹配,从而完成指纹识别。

在这里插入图片描述

电容式指纹识别技术较为复杂,对技术研发和积累有较高要求,并且涉及大量专利,算法得实现也相对困难,所以目前全球只有少数公司能在这方面提供领先的技术产品。

2.2 光学式指纹识别

然后是光学式指纹识别,大家常见的指纹考勤机就是光学式指纹识别。

这类光学式指纹识别主要包括4个方面功能

  • 1.指纹模块负责采集指纹图像。
  • 2.数字信号处理器主要把采集到的指纹图像转化为数字信号。
  • 3.微控制器是整个系统的控制单元,在这里将进行指纹的验证以及输出指令。
  • 4.液晶显示器将输出指纹验证结果。

当我们把手指放在指纹考勤机上时,通过镜面反射原理,指纹模块就会采集指纹图像

在这里插入图片描述

接着指纹图像就会被数字信号处理器转换成数字信号

在这里插入图片描述

然后通过微控制器将数字信号与指纹库里的指纹进行匹配,匹配结果将通过液晶显示器显示出来。这就是光学式指纹识别的工作原理。

电容式与光学式指纹识别主要在指纹的采集方式上拥有较大差异,而在指纹的验证过程中则基本类似。然而因为电容式指纹识别拥有体积小、适用性广的优点,已经有越来越多的设备采用电容式指纹识别,未来的主流将是电容式指纹识别。

3 指纹识别算法实现

3.1 指纹识别算法流程

在这里插入图片描述

3.2 指纹图像预处理

  • 1.图像归一化
  • 2.图像分割
  • 3.图像二值化
  • 4.细化

几个步骤 当然有一些算法为了追求极致,中间还利用了增强、多重滤波等方式,但最根本的目的都是为了在细化之后保留指纹信息并且方便后续处理。

预处理之后是特征点的提取,也就是找到指纹图像当中有价值,具有唯一性和不变性的信息。主要特征点有端点、分叉点几类,在提取部分除了简单的遍历检索确认之外,还有比较重要的一步是伪特征点的去除,主要是针对图像不清晰、不完整导致的断点和边缘端点等。

最后一步是特征点的匹配,将指纹库中的指纹信息与提取的目标图像特征点进行对比。主流算法是以指纹中心点为依据,根据特征点所在的角度及距离,确认其所在位置,根据匹配度计算是否是同一手指的指纹。

3.3 指纹图像目标提取

指纹图像目标提取主要是将指纹图片中提取出来,也叫做指纹图像分割。

图片的前景通过观察可知是由条状或者圆形的一些组成,而底图其他部分只是一个均匀的底色而已。

我们使用非常简单的手段,基于局部梯度就可以很容易实现我们的目标。

方差梯度法提取指纹:

指纹图像通常由前景区域(包含有指纹的脊线和谷线)和背景区域这两部分组成。一般来说,在指纹图像的前景区域中,指纹的脊线和谷线的灰度差是较大的,因而其灰度统计特性局部灰度方差很大;而在指纹图像的背景区域中,两者的方差是很小的。基于这一特性,可以利用指纹图像的局部方差来进行分割。因此,这种方法也被称为方差梯度法。

的灰度平均值 M和方差 Var计算方法:
在这里插入图片描述

提取前的指纹图像:

在这里插入图片描述

提取后的指纹图像:
在这里插入图片描述

可以看到,学长做的还有些噪点,但是也很好解决,做一次形态学操作即可:

在这里插入图片描述

这样噪点就去除了。

3.4 指纹图像增强

在这里插入图片描述

3.5 指纹特征提取

人体指纹的特征可以反映在给定的人类群体里来自不同手指的指纹之间相似的程度。

指纹的特征信息很多,所有的这些指纹特征信息构成了庞大的指纹特征集合。

指纹的细节特征主要指的是纹线端点(RidgeEnding)和纹线分叉点(RidgeBifurcation)。

纹线端点指的是纹线突然结束的位置,而纹线分叉点则是指纹线一分为二的位置。

大量的统计结果表明,使用这两类特征点就足以描述指纹的唯一性。

在这里插入图片描述

Minutia Cylinder-Code (MCC) ,该算法是非常著名的指纹特征识提取算法,

第一次发表在:IEEE tPAMI

Minutia Cylinder-Code: a new representation and matching technique for
fingerprint recognition", IEEE tPAMI 2010

  • MCC提出了一种基于三维数据结构的圆柱编码算法,其从细节的距离和角度出发,构造了圆柱编码
  • 为一种多级的指纹匹配方法,其不仅使用了细节点特征也使用了方向场等特征
  • 特征视为一种局部结构,也是3D结构

在这里插入图片描述

部分实现代码:

# Compute the cell coordinates of a generic local structure# 计算
​    mcc_radius = 70
​    mcc_size = 16
​    

g = 2 * mcc_radius / mcc_size
x = np.arange(mcc_size)*g - (mcc_size/2)*g + g/2
y = x[..., np.newaxis]
iy, ix = np.nonzero(x**2 + y**2 <= mcc_radius**2)
ref_cell_coords = np.column_stack((x[ix], x[iy]))
    mcc_sigma_s = 7.0
    mcc_tau_psi = 400.0
    mcc_mu_psi = 1e-2
    

def Gs(t_sqr):
    """Gaussian function with zero mean and mcc_sigma_s standard deviation, see eq. (7) in MCC paper"""
    return np.exp(-0.5 * t_sqr / (mcc_sigma_s**2)) / (math.tau**0.5 * mcc_sigma_s)

def Psi(v):
    """Sigmoid function that limits the contribution of dense minutiae clusters, see eq. (4)-(5) in MCC paper"""
    return 1. / (1. + np.exp(-mcc_tau_psi * (v - mcc_mu_psi)))


​    
​    
​    
​    # n: number of minutiae# c: number of cells in a local structure
​    

xyd = np.array([(x,y,d) for x,y,_,d in valid_minutiae]) # matrix with all minutiae coordinates and directions (n x 3)

# rot: n x 2 x 2 (rotation matrix for each minutia)

d_cos, d_sin = np.cos(xyd[:,2]).reshape((-1,1,1)), np.sin(xyd[:,2]).reshape((-1,1,1))
rot = np.block([[d_cos, d_sin], [-d_sin, d_cos]])

# rot@ref_cell_coords.T : n x 2 x c

# xy : n x 2

xy = xyd[:,:2]

# cell_coords: n x c x 2 (cell coordinates for each local structure)

cell_coords = np.transpose(rot@ref_cell_coords.T + xy[:,:,np.newaxis],[0,2,1])

# cell_coords[:,:,np.newaxis,:]      :  n x c  x 1 x 2

# xy                                 : (1 x 1) x n x 2

# cell_coords[:,:,np.newaxis,:] - xy :  n x c  x n x 2

# dists: n x c x n (for each cell of each local structure, the distance from all minutiae)

dists = np.sum((cell_coords[:,:,np.newaxis,:] - xy)**2, -1)

# cs : n x c x n (the spatial contribution of each minutia to each cell of each local structure)

cs = Gs(dists)
diag_indices = np.arange(cs.shape[0])
cs[diag_indices,:,diag_indices] = 0 # remove the contribution of each minutia to its own cells

# local_structures : n x c (cell values for each local structure)

local_structures = Psi(np.sum(cs, -1))

3.6 指纹识别结果

提取特征后,剩下的任务就是对特征进行分类了,可以使用的算法就很多了,比如svm,决策树、神经网络,都可以

在这里插入图片描述

4 整体效果

在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/78835.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

SSL证书过期巡检脚本

Shell版 demo.txt [rootbogon aihuidi]# cat demo.txt www.aihuidi.com:111.222.333.444 xxx.xxx.com:ip,ip脚本&#xff1a; [rootlocalhost aihuidi]# vim check_ssl.sh #!/bin/bash for line in $(cat demo.txt) dodomain$(echo ${line} | awk -F : {print $1})ip_pool$(…

1AE4 的魔改混合放大电路

先上电路图&#xff1a; 最新的1AE4的电路&#xff0c;目标依旧是极致的音效。 因此&#xff0c;为了将1AE4的潜力榨干&#xff0c;采用了一些完全不同的思路&#xff1a; 1&#xff09;原有的屏极接地&#xff0c;因为是一个壳子&#xff0c;所以能起到很好的屏蔽作用&#…

vue 使用indexDB 简单完整逻辑

1 npm npm install idb 2 代码 <template><div><p>Data: {{ data }}</p><button click"fetchData">Fetch Data</button></div> </template><script> import { openDB } from idb;export default {data() {…

❤ 全面解析若依框架vue2版本(springboot-vue前后分离--前端部分)

❤ 解析若依框架之前台修改 1、修改页面标题和logo 修改网页上的logo ruoyi-ui --> public --> favicon.ico&#xff0c;把这个图片换成你自己的logo 修改网页标题 根目录下的vue.config.js const name process.env.VUE_APP_TITLE || ‘若依管理系统’ // 网页标题 换成…

LVS负载均衡DR(直接路由)模式

在LVS&#xff08;Linux Virtual Server&#xff09;负载均衡中的DR&#xff08;Direct Routing&#xff09;模式下&#xff0c;数据包的流向如下&#xff1a; 客户端发送请求到负载均衡器&#xff08;LVS&#xff09;的虚拟IP&#xff08;VIP&#xff09;。负载均衡器&#x…

C++入门篇9---list

list是带头双向循环链表 一、list的相关接口及其功能 1. 构造函数 函数声明功能说明list(size_type n,const value_type& valvalue_type())构造的list中包含n个值为val的元素list()构造空的listlist(const list& x)拷贝构造list(InputIterator first, InputIterator…

【Apollo】Apollo版本变迁里程碑

特点与改进 概述里程碑6.0版本特点及改进7.0版本特点及改进8.0版本特点及改进代码差异 主页传送门&#xff1a;&#x1f4c0; 传送 概述 Apollo (阿波罗)是一个开放的、完整的、安全的平台&#xff0c;将帮助汽车行业及自动驾驶领域的合作伙伴结合车辆和硬件系统&#xff0c;快…

IntellIJ Idea 连接数据库-MySql

前言&#xff1a;可以用mariaDB工具&#xff0c;在本地创建服务器主机和数据库&#xff0c;而后用intellIJ Idea尝试连接 MariaDB创建数据库练习 1.IntellIJ Idea打开界面右侧Database工具&#xff0c;选择MySQL数据库。 2.填写数据库账号密码&#xff0c;地址端口号&#xff…

判断平面中两射线是否相交的高效方法

1. 简介 最近在工作中遇到判断平面内两射线是否相交的问题。 对于这个问题的解决,常规的方法是将两条射线拓展为直线,计算直线的交点,而后判断交点是否在射线上。 这种方法,在思路上较为直观,也易于理解。然后,该方法在计算量上相对较大。对于少量射线间的交点计算尚可…

WPF国际化的实现方法(WpfExtensions.Xaml)

https://blog.csdn.net/eyupaopao/article/details/120090431 resx资源文件实现 resx资源文件&#xff0c;实现的过程比第一种复杂&#xff0c;但resx文件本身编辑比较简单&#xff0c;维护起来比较方便。需要用到的框架&#xff1a;WpfExtensions.Xaml 为每种语言添加.resx资…

移动通信系统的LMS自适应波束成形技术matlab仿真

目录 1.算法运行效果图预览 2.算法运行软件版本 3.部分核心程序 4.算法理论概述 5.算法完整程序工程 1.算法运行效果图预览 2.算法运行软件版本 matlab2022a 3.部分核心程序 ..................................................................... idxx0; while idxx&…

数据分析 | 调用Optuna库实现基于TPE的贝叶斯优化 | 以随机森林回归为例

1. Optuna库的优势 对比bayes_opt和hyperoptOptuna不仅可以衔接到PyTorch等深度学习框架上&#xff0c;还可以与sklearn-optimize结合使用&#xff0c;这也是我最喜欢的地方&#xff0c;Optuna因此特性可以被使用于各种各样的优化场景。 2. 导入必要的库及加载数据 用的是sklea…

Ordinals 之后,以太坊铭文协议 Ethscriptions 如何再塑 NFT 资产形态

随着加密市场的发展&#xff0c;NFT 赛道逐渐形成了其独有的市场。但在加密熊市的持续影响下&#xff0c;今年 NFT 赛道的发展充满坎坷与挑战。据 NFTGO 数据显示&#xff0c;截至 8 月 7 日&#xff0c;与去年相比&#xff0c;NFT 市值总计约 56.4 亿美元&#xff0c;过去 1 年…

【业务功能篇69】Springboot 树形菜单栏功能设计

业务场景: 系统的界面&#xff0c;前端设计的时候&#xff0c;一般会给一个菜单栏&#xff0c;顶部横向以及左侧纵向的导航栏菜单&#xff0c;这里后端返回菜单栏的时候&#xff0c;就涉及层级父子项的问题&#xff0c;所以返回数据的时候&#xff0c;我们需要按照树化形式返回…

SpringBoot 操作Redis、创建Redis文件夹、遍历Redis文件夹

文章目录 前言依赖连接 RedisRedis 配置文件Redis 工具类操作 Redis创建 Redis 文件夹查询数据遍历 Redis 文件夹 前言 Redis 是一种高性能的键值存储数据库&#xff0c;支持网络、可基于内存亦可持久化的日志型&#xff0c;而 Spring Boot 是一个简化了开发过程的 Java 框架。…

CSRF

文章目录 CSRF(get)CSRF(post)CSRF Token CSRF(get) 根据提示的用户信息登录 点击修改个人信息 开启bp代理&#xff0c;点击submit 拦截到请求数据包 浏览器关闭代理 刷新页面 CSRF(post) 使用BP生成CSRF POC post请求伪造&#xff0c;可以通过钓鱼网站&#xff0c;诱导用户去…

【LeetCode】买卖股票的最佳时机最多两次购买机会

买卖股票的最佳时机 题目描述算法分析程序代码 链接: 买卖股票的最佳时机 题目描述 算法分析 程序代码 class Solution { public:int maxProfit(vector<int>& prices) {int n prices.size();vector<vector<int>> f(n,vector<int>(3,-0x3f3f3f))…

数据生成 | MATLAB实现WGAN生成对抗网络数据生成

数据生成 | MATLAB实现WGAN生成对抗网络数据生成 目录 数据生成 | MATLAB实现WGAN生成对抗网络数据生成生成效果基本描述程序设计参考资料 生成效果 基本描述 1.WGAN生成对抗网络&#xff0c;数据生成&#xff0c;样本生成程序&#xff0c;MATLAB程序&#xff1b; 2.适用于MATL…

基于 Debian 12 的MX Linux 23 正式发布!

导读MX Linux 是基于 Debian 稳定分支的面向桌面的 Linux 发行&#xff0c;它是 antiX 及早先的 MEPIS Linux 社区合作的产物。它采用 Xfce 作为默认桌面环境&#xff0c;是一份中量级操作系统&#xff0c;并被设计为优雅而高效的桌面与如下特性的结合&#xff1a;配置简单、高…

阿里云云解析DNS核心概念与应用

文章目录 1.DNS解析基本概念1.1.DNS基本介绍1.2.域名的分层结构1.3.DNS解析原理1.4.DNS递归查询和迭代查询的区别1.5.DNS常用的解析记录 2.使用DNS云解析将域名与SLB公网IP进行绑定2.1.进入云解析DNS控制台2.2.添加域名解析记录2.3.验证解析是否生效 1.DNS解析基本概念 DNS官方…