Transformer-LSTM预测 | Matlab实现Transformer-LSTM时间序列预测

Transformer-LSTM预测 | Matlab实现Transformer-LSTM时间序列预测

目录

    • Transformer-LSTM预测 | Matlab实现Transformer-LSTM时间序列预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现Transformer-LSTM时间序列预测,Transformer-LSTM;

2.运行环境为Matlab2023b及以上;

3.data为数据集,输入输出单个变量,一维时间序列预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价;

在这里插入图片描述

程序设计

  • 完整程序和数据下载私信博主回复Matlab实现Transformer-LSTM时间序列预测


%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据



%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);

[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);

%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));

t_train = t_train';
t_test  = t_test' ;

%%  数据格式转换
for i = 1 : M
    p_train{i, 1} = P_train(:, :, 1, i);
end

for i = 1 : N
    p_test{i, 1}  = P_test( :, :, 1, i);
end




参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128163536?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128151206?spm=1001.2014.3001.5502

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/787460.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

如何评价Flutter?

哈喽,我是老刘 我们团队使用Flutter已经快6年了。 有很多人问过我们对Flutter的评价。 今天在这里回顾一下6年前选择Flutter时的原因,以及Flutter在这几年中的实际表现如何。 选择Flutter时的判断 1、性能 最开始吸引我们的就是其优秀的性能。 特别是…

【SQL】做项目时用到的语句整理(去重/多表关联)

1. 对日期去重(groupby) 需要:新建一张表,对原来表中的某个列(href)进行去重,并按照最新的日期进行排版 适用:如果有一张表,我们重复往里面存入数据,有一些除了日期以外&#xff0…

符号同步、定时同步和载波同步

符号同步、定时同步和载波同步是通信系统中重要的同步技术,它们各自承担着不同的功能和作用。以下是对这三种同步技术的详细解释: 符号同步 定义: 符号同步,也称为定时恢复或时钟恢复,是指在数字通信系统中&#xff…

Java字符串(String、字符串拼接、原理)

文章目录 一、String字符串1.1创建方式【直接赋值、new一个对象】1.1.1 使用字符串字面值直接赋值:(1)字符串字面量创建String对象的转换过程(2)一些方法(3)说明 1.1.2 使用new关键字创建字符串…

MySQL:TABLE_SCHEMA及其应用

MySQL TABLE_SCHEMA及其应用 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_28550263/ar…

285个地级市出口产品质量及技术复杂度(2011-2021年)

出口产品质量与技术复杂度:衡量国家竞争力的关键指标 出口产品质量是衡量国内企业生产的产品在国际市场上竞争力的重要标准。它不仅要求产品符合国际标准和目标市场的法律法规,而且需要保证产品质量的稳定性和可靠性。而出口技术复杂度则进一步体现了一…

龙迅LT8641UXE HDMI四进一出切换开关,支持标准HDMI 2.0内置MCU

龙迅LT8641UXE描述: Lontium LT8641UX HDMI2.0开关具有符合HDMI2.0/1.4规范的4:1开关,最大6Gbps高速数据速率,自适应均衡RX输入和预先强调的TX输出支持长电缆应用,没有XTAL板上节省BOM成本。LT8641UX HDMI2.0开关自动…

C++之goto陈述

关键字 goto用于控制程式执行的顺序&#xff0c;使程式直接跳到指定标签(lable) 的地方继续执行。 形式如下 标签可以是任意的识别字&#xff0c;后面接一个冒号。 举例如下 #include <iostream>int main() {goto label_one;label_one: {std::cout << "Lab…

数字人直播时代来了!数字人直播系统搭建,AI虚拟数字人直播系统源码部署

数字人直播系统这是一种利用人工智能技术&#xff0c;实现自动化生成真实人物直播销售商品的综合性解决方案。 一、目前数字人直播支持的平台&#xff1a; 抖音、快手、视频号、小红书、淘宝、支付宝生活号、TikTok、阿里国际站等。 技术栈 数据库&#xff1a;mysql5.7 技术搭…

搜维尔科技:OptiTrack在NAB2024展示了一系列业界领先的媒体技术

广泛的显示和动作捕捉跟踪技术组合涵盖无与伦比的室内和室外 LED 解决方案、前沿技术演示以及最新的软件和硬件产品 可视化技术领域的全球领导者 Planar及其附属公司 3D 跟踪系统的全球领导者OptiTrack宣布&#xff0c;两家公司将在 2024 年全国广播协会 (NAB) 展会上展示其最全…

新火种AI|OpenAI的CEO又有新动作?这次他成立了AI健康公司

作者&#xff1a;一号 编辑&#xff1a;美美 AI技术即将改变医疗健康市场。 就在前两天&#xff0c;人工智能和医疗健康领域迎来了一个重要时刻。OpenAI的CEO萨姆阿尔特曼&#xff08;Sam Altman&#xff09;与Thrive Global的CEO阿里安娜赫芬顿&#xff08;Arianna Huffing…

Linux网络命令:网络工具socat详解

目录 一、概述 二、基本用法 1、基本语法 2、常用选项 3、获取帮助 三、用法示例 1. 监听 TCP 端口并回显接收到的数据 2. 通过 TCP 端口转发数据到 UNIX 套接字 3. 将文件内容发送到 TCP 端口&#xff1a; 4. 使用伪终端进行串行通信 5、启动一个TCP服务器 6、建…

go-redis源码解析:连接池原理

1. 执行命令的入口方法 redis也是通过hook执行命令&#xff0c;initHooks时&#xff0c;会将redis的hook放在第一个 通过hook调用到process方法&#xff0c;process方法内部再调用_process 2. 线程池初始化 redis在新建单客户端、sentinel客户端、cluster客户端等&#xff0c…

Apache Flink核心特性应用场景

Flink的定义 Apache Flink是一个分布式处理引擎&#xff0c;用于处理 无边界数据流&#xff0c; 有边界数据流上金秀贤有状态的计算。Flink能在所有常见的集群环境中运行&#xff0c;并能以内存速度和任意规模进行计算如下Flink官网的一张图 Flink 与Spark的区别 Flink 中处…

《大语言模型的临床和外科应用:系统综述》

这篇题为《大语言模型的临床和外科应用&#xff1a;系统综述》的文章对大语言模型&#xff08;LLM&#xff09;目前在临床和外科环境中的应用情况进行了全面评估。 大语言模型&#xff08;LLM&#xff09;是一种先进的人工智能系统&#xff0c;可以理解和生成类似人类的文本。…

理解 LibTorch 的工作流程

深入理解 LibTorch 的工作流程 摘要 本文详细介绍了 LibTorch 的工作流程&#xff0c;包括模型定义、数据准备、训练、评估和推理。通过具体的伪代码示例&#xff0c;帮助读者深入理解 LibTorch 的基本原理和使用方法。 关键字 LibTorch, 深度学习, 动态计算图, 自动微分, …

Sharding-JDBC分库分表之SpringBoot主从配置

Sharding-JDBC系列 1、Sharding-JDBC分库分表的基本使用 2、Sharding-JDBC分库分表之SpringBoot分片策略 3、Sharding-JDBC分库分表之SpringBoot主从配置 前言 在开发中&#xff0c;如果对数据库的读和写都在一个数据服务器中操作&#xff0c;面对日益增加的访问量&#x…

HI3559AV100四路IMX334非融合拼接8K视频记录

下班无事&#xff0c;写篇博客记录海思hi3559av100四路4K视频采集拼接输出8K视频Demo 一、准备工作&#xff1a; 软件&#xff1a;Win11系统、VMware虚拟机Ubuntu14、Hitool、Xshell等 硬件&#xff1a;HI3559AV100开发板4路imx334摄像头、串口线、电源等 附硬件图&#xff1…

阿里发布大模型发布图结构长文本处理智能体,超越GPT-4-128k

随着大语言模型的发展&#xff0c;处理长文本的能力成为了一个重要挑战。虽然有许多方法试图解决这个问题&#xff0c;但都存在不同程度的局限性。最近&#xff0c;阿里巴巴的研究团队提出了一个名为GraphReader的新方法&#xff0c;通过将长文本组织成图结构&#xff0c;并利用…

《RWKV》论文笔记

原文出处 [2305.13048] RWKV: Reinventing RNNs for the Transformer Era (arxiv.org) 原文笔记 What RWKV(RawKuv):Reinventing RNNs for the Transformer Era 本文贡献如下&#xff1a; 提出了 RWKV 网络架构&#xff0c;结合了RNNS 和Transformer 的优点&#xff0c;同…