思路:考虑缩点,因为是无向图,所以双连通分量缩完点后是一棵树,我们去枚举删除每一条树边的答案,然后取最小值即可。
#include <bits/stdc++.h>
using namespace std;
const int N = 3e5 + 5;
typedef long long ll;
typedef pair<int,int> pll;
typedef array<ll, 3> ar;
int mod = 1e9+7;
const int maxv = 4e6 + 5;
// #define endl "\n"
int n,m;
vector<pll> e[N];
vector<int> e2[N];
vector<vector<int> > vdcc;
int dfsn[N],low[N],tot,b[N],sz[N];
stack<int> s;
void add(int u,int v,int i)
{
e[u].push_back({v,i});
e[v].push_back({u,i});
}
void tarjan(int x,int f)//tarjan 求边双连通分量
{
dfsn[x]=low[x]=++tot,s.push(x);
for(auto [u,i]: e[x]){
if(!dfsn[u]){
tarjan(u,i);
low[x]=min(low[x],low[u]);
}
else if(f!=i) low[x]=min(low[x],dfsn[u]);
}
if(dfsn[x]==low[x]){
vector<int> c;
while(1){
auto t=s.top();
b[t]=vdcc.size();
sz[vdcc.size()]++;
c.push_back(t);
s.pop();
if(t==x) break;
}
vdcc.push_back(c);
}
}
void init()
{
tot=0;
for(int i=0;i<=n;i++){
e[i].clear();
e2[i].clear();
dfsn[i]=b[i]=sz[i]=low[i]=0;
}
vdcc.clear();
}
ll ans=1e18;
int dfs(int x,int f)
{
ll sum=0;
for(auto u: e2[x]){
if(u!=f) sum+=dfs(u,x);
}
sum+=sz[x];
ll res=n-sum;
ans=min(ans,(sum)*(sum-1)/2+(res-1)*res/2);
return sum;
}
void solve()
{
cin>>n>>m;
init();
ans=1e18;
for(int i=1;i<=m;i++){
int u,v;
cin>>u>>v;
add(u,v,i);
}
for(int i=1;i<=n;i++){
if(!dfsn[i]) tarjan(i,-1);
}
for(int i=1;i<=n;i++){
for(auto [j,id]: e[i]){
if(b[i]!=b[j]){
e2[b[i]].push_back(b[j]);
// e2[b[j]].push_back(b[i]);
}
}
}
dfs(b[1],-1);
cout<<ans<<endl;
}
int main()
{
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
int t;
t=1;
cin>>t;
while(t--){
solve();
}
system("pause");
return 0;
}