【Java算法】二分查找 下

    🔥个人主页: 中草药

🔥专栏:【算法工作坊】算法实战揭秘


一.山脉数组的峰顶索引

题目链接:852.山脉数组的峰顶

算法原理

        这段代码实现了一个查找山峰数组中峰值索引的算法。山峰数组是一个先递增后递减的数组,即存在一个索引 i 使得对于所有的 j < i,有 arr[j] < arr[j + 1],且对于所有的 k > i,有 arr[k] > arr[k - 1]。这个索引 i 就是峰值的索引。

        算法使用了二分查找(Binary Search)的方法来寻找峰值索引。其核心思想是在数组中寻找拐点(即峰值),在该点左侧的值小于右侧的值,在右侧则相反。由于数组是先升后降的,这个拐点就是我们所要找的峰值。

具体分析如下:

  1. 初始化两个指针 leftright,分别指向数组的第二个元素和倒数第二个元素。这是因为数组的第一个和最后一个元素不可能是峰值。

  2. while 循环中,计算中间位置 mid。这里使用 (left + (right - left + 1)) / 2 而不是常见的 (left + right) / 2 来避免可能的整数溢出,并确保 mid 总是指向 leftright 之间的元素,包括边界上的元素。

  3. 如果 arr[mid] 大于 arr[mid - 1],说明 mid 可能是峰值或者峰值在 mid 的右边,因此将 left 更新为 mid

  4. 否则,如果 arr[mid] 小于或等于 arr[mid - 1],说明峰值在 mid 的左边,因此将 right 更新为 mid - 1

  5. leftright 相遇时,循环结束,此时 left 指向的位置就是峰值的索引。

这种算法的时间复杂度是 O(log n),其中 n 是数组的长度,因为每次迭代都将搜索范围减半。这比线性搜索的 O(n) 时间复杂度要高效得多。

代码

 public int peakIndexInMountainArray(int[] arr) {
        int left=1,right=arr.length-2;
        while(left<right){
            int mid=left+(right-left+1)/2;
            if(arr[mid]>arr[mid-1]){
                left=mid;
            }else{
                right=mid-1;
            }
        }
        return left;
    }

举例 

测试用例 arr = [0,10,5,2]

首先,初始化 left = 1right = arr.length - 2 = 2

接下来,我们进入 while 循环:

  1. 第一次循环:

    • left = 1right = 2
    • 计算 mid = left + (right - left + 1) / 2 = 1 + (2 - 1 + 1) / 2 = 2
    • 检查 arr[mid] 是否大于 arr[mid - 1],也就是检查 arr[2] 是否大于 arr[1]。由于 arr[2] = 5 并不大于 arr[1] = 10,条件不满足。
    • 所以,我们将 right 更新为 mid - 1,即 right = 1
  2. 这时,leftright 都指向同一个位置 1,循环条件 left < right 不再满足,循环结束。

最后,返回 left 的值,即 1。这意味着数组中的峰值位于索引 1 上,这与给定数组 [0, 10, 5, 2] 的实际情况相吻合,因为最大值 10 确实位于索引 1

所以,这段代码正确地找到了山峰数组的峰值索引。

 二.寻找峰值

题目链接:162.寻找峰值

算法原理

        同样使用了二分查找(Binary Search)算法来找到所谓的“峰值元素”。峰值元素定义为一个元素,它严格大于它的邻居。注意,数组可以是未排序的,并且数组的两端被认为是邻居元素的“虚拟”较小值,这样数组的起始元素和末尾元素也可以成为峰值元素。

算法的步骤如下:

  1. 初始化两个指针 leftright,分别指向数组的起始位置 0 和终止位置 nums.length - 1

  2. 进入 while 循环,只要 left 小于 right,表示搜索区间内还有多个元素需要考虑。

  3. 在循环内部,计算中间位置 mid。这里使用 (left + (right - left) / 2) 来避免整数溢出,并确保 mid 总是落在 leftright 之间。

  4. 比较 nums[mid]nums[mid + 1] 的大小。如果 nums[mid] 小于 nums[mid + 1],那么峰值一定不在 mid 及其左侧,因为从 midmid + 1 数组是上升的。这时,将 left 更新为 mid + 1

  5. 否则,如果 nums[mid] 大于或等于 nums[mid + 1],那么峰值可能在 mid 或者其左侧。这时,将 right 更新为 mid

  6. leftright 相遇时,循环结束,此时 left 指向的位置就是峰值元素的索引。这是因为当 left == right 时,它们共同指向的元素必定是峰值,因为在之前的迭代中,我们总是排除了较小的邻居元素所在的那一边。

这段代码的时间复杂度同样是 O(log n),其中 n 是数组的长度,因为每次迭代都将搜索范围减半,这使得算法非常高效。

代码

public int findPeakElement(int[] nums) {
        int left=0,right=nums.length-1;
        while(left<right){
            int mid=left+(right-left)/2;
            if(nums[mid]<nums[mid+1]){
                left=mid+1;
            }else{
                right=mid;
            }
        }
        return left;
    }

举例 

测试用例 [1,2,1,3,5,6,4]

我们开始分析:

  1. 初始化 left = 0right = nums.length - 1 = 6

  2. 第一次循环:

    • mid = left + (right - left) / 2 = 0 + (6 - 0) / 2 = 3
    • 检查 nums[mid] 和 nums[mid + 1],即 nums[3] 和 nums[4],比较 3 和 5
    • 因为 nums[3] 小于 nums[4],所以更新 left 为 mid + 1,即 left = 4
  3. 第二次循环:

    • 此时 left = 4 和 right = 6
    • mid = left + (right - left) / 2 = 4 + (6 - 4) / 2 = 5
    • 检查 nums[mid] 和 nums[mid + 1],即 nums[5] 和 nums[6],比较 6 和 4
    • 因为 nums[5] 不小于 nums[6],所以更新 right 为 mid,即 right = 5
  4. 第三次循环:

    • 现在 left = 4 和 right = 5
    • mid = left + (right - left) / 2 = 4 + (5 - 4) / 2 = 4
    • 检查 nums[mid] 和 nums[mid + 1],即 nums[4] 和 nums[5],比较 5 和 6
    • 因为 nums[4] 小于 nums[5],所以更新 left 为 mid + 1,即 left = 5
  5. 第四次循环:

    • 此时 left = 5 和 right = 5
    • 因为 left 等于 rightwhile 循环的条件不再满足,循环结束。

最终,函数返回 left 的值,即 5。这表明数组 [1, 2, 1, 3, 5, 6, 4] 中的一个峰值元素位于索引 5,其值为 6。值得注意的是,根据题目的定义,可能有多个峰值元素,而算法保证返回的是其中一个。在这个例子中,索引 1 (nums[1] = 2) 和索引 5 (nums[5] = 6) 都是合法的峰值元素。

三.寻找旋转排序数组的最小值

题目链接:153.寻找旋转排序数组的最小值

​ 

算法原理

        这段代码实现了一个算法,用于在一个旋转排序数组中找到最小元素。旋转排序数组指的是原本有序的数组经过若干次旋转得到的结果。例如,数组 [1, 2, 3, 4, 5] 经过旋转可能变成 [3, 4, 5, 1, 2]

        算法的原理基于二分查找(Binary Search),但是针对旋转排序数组进行了调整。关键在于利用旋转特性来缩小搜索范围。旋转数组的最小元素位于旋转点之后,旋转点之前的子数组是递增的,旋转点之后的子数组也是递增的,但整个数组的顺序被打乱。

算法步骤如下:

  1. 初始化 leftright 分别指向数组的起始和末尾位置。

  2. 获取数组最后一个元素 x 作为基准值。这是因为在旋转数组中,最后一个元素通常是未旋转前数组的最后一个元素,或者是旋转后新数组的最大值。

  3. 进入 while 循环,只要 left < right,就说明搜索空间大于1个元素。

  4. 计算中间位置 mid,使用 (left + (right - left) / 2) 来避免整数溢出问题。

  5. 比较 nums[mid]x 的大小:

    • 如果 nums[mid] > x,说明 mid 位于旋转点的左侧递增子数组中,最小值只能在 mid 右侧的子数组中,因此更新 left 为 mid + 1
    • 否则,nums[mid] <= x,说明 mid 位于旋转点的右侧递增子数组中,或者正好位于旋转点上,最小值可能在 mid 或者左侧子数组中,因此更新 right 为 mid
  6. leftright 相遇时,循环结束,此时 left 指向的位置就是最小元素的索引,返回 nums[left] 即可得到最小值。

此算法的时间复杂度为 O(log n),其中 n 是数组的长度,因为它在每一步都有效地将搜索空间减半。这使得算法在处理大数据量时非常高效。

代码

 public int findMin(int[] nums) {
         int left=0,right=nums.length-1;
         int x=nums[right];
        while(left<right){
            int mid=left+(right-left)/2;
            if(nums[mid]>x){
                left=mid+1;
            }else{
                right=mid;
            }
        }
        return nums[left];
    }

举例 

测试用例 nums = [4,5,6,7,0,1,2]

我们开始逐步分析:

  1. 初始化 left = 0 和 right = nums.length - 1 = 6
  2. 设置 x = nums[right] = nums[6] = 2

第一次循环:

  • mid = left + (right - left) / 2 = 0 + (6 - 0) / 2 = 3
  • 检查 nums[mid] 和 x,即 nums[3] 和 2,比较 7 和 2
  • 因为 nums[mid] 大于 x,更新 left 为 mid + 1,即 left = 4

第二次循环:

  • 此时 left = 4 和 right = 6
  • mid = left + (right - left) / 2 = 4 + (6 - 4) / 2 = 5
  • 检查 nums[mid] 和 x,即 nums[5] 和 2,比较 1 和 2
  • 因为 nums[mid] 不大于 x,更新 right 为 mid,即 right = 5

第三次循环:

  • 此时 left = 4 和 right = 5
  • mid = left + (right - left) / 2 = 4 + (5 - 4) / 2 = 4
  • 检查 nums[mid] 和 x,即 nums[4] 和 2,比较 0 和 2
  • 因为 nums[mid] 不大于 x,更新 right 为 mid,即 right = 4

第四次循环:

  • 现在 left = 4 和 right = 4
  • while 循环的条件 left < right 不再满足,循环结束。

最终,函数返回 nums[left] 的值,即 nums[4],结果为 0

这表明数组 [4, 5, 6, 7, 0, 1, 2] 中的最小元素为 0,位于索引 4。此算法成功找到了旋转排序数组中的最小元素。

四.LCR 173.点名 

题目链接:LCR 173.点名

算法原理

  1. 初始化两个指针 leftright,分别指向数组的起始位置 0 和终止位置 records.length - 1

  2. 使用 while 循环,只要 left < right,意味着数组中还可能存在不匹配的情况。

  3. 计算中间位置 mid,使用 (left + (right - left) / 2) 来避免整数溢出。

  4. 检查 mid 位置的元素是否等于 mid

    • 如果 records[mid] 等于 mid,这意味着 mid 位置的值与索引匹配,因此缺失的元素可能在 mid 的右侧。更新 left 为 mid + 1
    • 否则,如果 records[mid] 不等于 mid,这可能是由于缺失的元素在 mid 的位置应该出现,但实际没有出现。因此,更新 right 为 mid,继续在左侧查找。
  5. leftright 相遇时,循环结束。此时,left 指向的位置要么是缺失元素应该出现的位置,要么紧随其后。

  6. 最后,检查 left 位置的元素是否等于 left

    • 如果 left 位置的元素等于 left,这意味着 left 位置的元素没有缺失,因此缺失的元素应该是 left + 1
    • 否则,left 位置的元素小于 left,这意味着 left 位置的元素是缺失的,因此缺失的元素就是 left

时间复杂度为 O(log n),其中 n 是数组的长度,因为算法使用了二分查找,每次迭代都将搜索范围减半。

这种算法特别适用于数据量大、有序或部分有序的数组中查找缺失的元素,效率远高于线性查找。

代码

public int takeAttendance(int[] records) {
        int left=0,right=records.length-1;
        while(left<right){
            int mid=left+(right-left)/2;
            if(mid==records[mid]){
                left=mid+1;
            }else{
                right=mid;
            }
        }
        //判断特殊情况,如[0,1,2,3,4,5]此时缺少的值应该是6
        if(left==records[left]){
            return left+1;
        }
        return left;
    }

举例 

测试用例 records = [0, 1, 2, 3, 4, 5, 6, 8]

我们开始逐步分析:

  1. 初始化 left = 0 和 right = records.length - 1 = 7

第一次循环:

  • mid = left + (right - left) / 2 = 0 + (7 - 0) / 2 = 3
  • 检查 records[mid] 和 mid,即 records[3] 和 3,比较 3 和 3
  • 因为 records[mid] 等于 mid,更新 left 为 mid + 1,即 left = 4

第二次循环:

  • 此时 left = 4 和 right = 7
  • mid = left + (right - left) / 2 = 4 + (7 - 4) / 2 = 5
  • 检查 records[mid] 和 mid,即 records[5] 和 5,比较 5 和 5
  • 因为 records[mid] 等于 mid,更新 left 为 mid + 1,即 left = 6

第三次循环:

  • 此时 left = 6 和 right = 7
  • mid = left + (right - left) / 2 = 6 + (7 - 6) / 2 = 6
  • 检查 records[mid] 和 mid,即 records[6] 和 6,比较 6 和 6
  • 因为 records[mid] 等于 mid,更新 left 为 mid + 1,即 left = 7

第四次循环:

  • 现在 left = 7 和 right = 7
  • while 循环的条件 left < right 不再满足,循环结束。

退出循环后:

  • 检查 left 位置的元素是否等于 left,即 records[7] 和 7,比较 8 和 7
  • 因为 records[left] 不等于 left,直接返回 left 的值,即 7

然而,根据代码逻辑,如果 left 位置的元素等于 left,我们应该返回 left + 1;否则,返回 left。在本例中,left 已经等于数组的长度,且 records[left] 实际上超出了正常的序列,因此正确结果应为 left 的值,即 7,这表明缺失的元素是 7

因此,这段代码正确地找到了测试用例 [0, 1, 2, 3, 4, 5, 6, 8] 中缺失的元素,即 7


🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀

以上,就是本期的全部内容啦,若有错误疏忽希望各位大佬及时指出💐

  制作不易,希望能对各位提供微小的帮助,可否留下你免费的赞呢🌸

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/787297.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

前端图表库G2快速上手

文档地址&#xff1a; https://g2-v3.antv.vision/zh/docs/manual/getting-started/ https://g2.antv.antgroup.com/ 安装&#xff1a; pnpm i antv/g2在vue3中使用&#xff1a; <script setup> import {Chart} from antv/g2; import {onMounted} from "vue"…

智慧运维管理平台建设方案(PPT原件)

1、智慧运维系统建设背景 2、智慧运维系统建设目标 3、智慧运维系统建设内容 4、智慧运维系统建设技术 5、智慧运维系统建设流程 6、智慧运维系统建设收益 软件全套资料获取及学习&#xff1a;本文末个人名片直接获取或者进主页。

咱迈出了模仿的第一大步!快进来看看~

微信公众号&#xff1a;牛奶Yoka的小屋 有任何问题。欢迎来撩~ 最近更新&#xff1a;2024/06/28 [大家好&#xff0c;我是牛奶。] 这是第一篇模仿文章。咱决定先模仿样式&#xff0c;从外至里&#xff0c;层层递进。于是找了几个大V的公众号&#xff0c;看来看去&#xff0c;发…

uniapp 微信小程序接入MQTT

MQTT安装 前期准备 由于微信小程序需要wss&#xff0c;所以要有域名SSL证书 新建目录/srv/mosquitto/config&#xff0c;/srv/mosquitto/config/cert 目录/srv/mosquitto/config中新建配置文件mosquitto.conf&#xff0c;文件内容 persistence true persistence_location /m…

Hospital Management Startup 1.0 SQL 注入漏洞(CVE-2022-23366)

前言 CVE-2022-23366是一个影响HMS v1.0的SQL注入漏洞。该漏洞存在于patientlogin.php文件中&#xff0c;允许攻击者通过特定的SQL注入来获取或修改数据库中的敏感信息。 具体来说&#xff0c;攻击者可以通过向patientlogin.php发送恶意构造的SQL语句来绕过身份验证&#xff…

基于 sftp 的 NAS (局域网文件存储服务器)

局域网 NAS (文件存储服务器) 的基本功能有: 能够存储文件, 同时能够通过多个设备访问 (上传/下载) 文件. 这些功能通过 sftp 可以实现. sftp 是基于 SSH 的文件传输协议, SSH 全程加密传输, 使用 公钥 认证 (不使用密码/口令), 能够提供很高的安全性. 上文说到, 在 LVM 和 bt…

大数据------JavaWeb------FilterListenerAJAXAxiosJSON

Filter Filter简介 定义&#xff1a;Filter表示过滤器&#xff0c;是JavaWeb三大组件&#xff08;Servlet、Filter、Listener&#xff09;之一。 作用&#xff1a;它可把对资源&#xff08;Servlet、JSP、Html&#xff09;的请求拦截下来从而实现一些特殊功能 过滤器一般完成…

绝区陆--大语言模型的幻觉问题是如何推动科学创新

介绍 大型语言模型 (LLM)&#xff08;例如 GPT-4、LLaMA-2、PaLM-2、Claude-2 等&#xff09;已展示出为各种应用生成类似人类文本的出色能力。然而&#xff0c;LLM 的一个鲜为人知的方面是它们倾向于“产生幻觉”或生成不正确或没有根据的事实陈述。我不认为这仅仅是一个限制…

苍穹外卖前后端搭建

文章目录 参考开发环境搭建前端环境搭建1、 前端工程基于 nginx2、启动nginx,访问测试后端环境搭建1、从资料中找到后端初始工程:2、用 IDEA 打开初始工程,了解项目的整体结构:数据库环境搭建前后端联调nginx反向代理和负载均衡1、nginx反向代理2、nginx 负载均衡完善登录功…

博客标题:C++中的继承:构建面向对象的基石

目录 ​编辑 引言 继承的基本形式 示例1&#xff1a;基本继承 继承的类型 示例2&#xff1a;不同类型的继承 多重继承 示例3&#xff1a;多重继承 继承与多态性 示例4&#xff1a;继承与多态 结论 结尾 引言 在面向对象编程&#xff08;OOP&#xff09;中&#xff…

飞跃边界,尽在掌握 —— Jump Desktop 8 for Mac,远程工作新体验!

Jump Desktop 8 for Mac 是一款强大的远程桌面控制软件&#xff0c;专为追求高效工作与生活平衡的用户设计。它允许您轻松地从Mac设备上远程访问和控制另一台电脑或服务器&#xff0c;无论是跨房间、跨城市还是跨国界&#xff0c;都能实现无缝连接&#xff0c;仿佛操作就在眼前…

TIA博途与威纶通触摸屏无实物仿真调试的具体方法示例

TIA博途与威纶通触摸屏无实物仿真调试的具体方法示例 准备条件: TIA PORTAL V16 S7-PLCSIM V16 EasyBuilderPro V6.9.1 NetToPLCsim V1.2.5 如有需要,可以在这个链接中下载 NetToPLCSim - Browse Files at SourceForge.net538 weekly downloads3 weekly downloads12 weekly d…

参数手册 : PXIe-1095

PXIe-1095 起售价 RMB 97,950.00 产品详细信息 PXI机箱类型: PXIe 机箱电源类型: 交流 混合插槽数量: 5 PXI Express插槽数量: 11 冗余硬件选项: 是 最大系统带宽: 24 GB/s 插槽数量: 18 PXI插槽数量: 0 系统定时插槽: 是 槽冷却能力: 82 瓦 简介 PXIe&#xff0c;18槽&am…

回溯算法-以学生就业管理系统为例

1.回溯算法介绍 1.来源 回溯算法也叫试探法&#xff0c;它是一种系统地搜索问题的解的方法。 用回溯算法解决问题的一般步骤&#xff1a; 1、 针对所给问题&#xff0c;定义问题的解空间&#xff0c;它至少包含问题的一个&#xff08;最优&#xff09;解。 2 、确定易于搜…

Vuforia AR篇(八)— AR塔防上篇

目录 前言一、设置Vuforia AR环境1. 添加AR Camera2. 设置目标图像 二、创建塔防游戏基础1. 导入素材2. 搭建场景3. 创建敌人4. 创建脚本 前言 在增强现实&#xff08;AR&#xff09;技术快速发展的今天&#xff0c;Vuforia作为一个强大的AR开发平台&#xff0c;为开发者提供了…

探索横河AQ6370E系列光谱仪隐藏功能!---高级标记功能!

横河AQ6370E系列光谱仪的这款光谱仪的传统功能中&#xff0c;其实还隐藏了一个特别实用的功能——高级标记功能&#xff01;前所未有的方式解析数据与测量信号&#xff0c;不仅带来了全新的测试体验&#xff0c;还提升了测量速度&#xff0c;那么这个功能怎么找到呢&#xff0c…

中国支付清算协会注销5家单位会员资格

7月1日&#xff0c;中国支付清算协会公告显示&#xff0c;按照《中国支付清算协会章程》《中国支付清算协会会员管理办法》等相关规定&#xff0c;经审议&#xff0c;中国支付清算协会决定注销江苏通付盾科技有限公司、北京丰瑞祥信息技术股份有限公司、山东新北洋信息技术股份…

24-7-9-读书笔记(九)-《爱与生的苦恼》[德]叔本华 [译]金玲

文章目录 《爱与生的苦恼》阅读笔记记录总结 《爱与生的苦恼》 《爱与生的苦恼》叔本华大佬的名书&#xff0c;里面有其“臭名昭著”的《论女人》&#xff0c;抛开这篇其他的还是挺不错的&#xff0c;哲学我也是一知半解&#xff0c;这里看得也凭喜好&#xff0c;这里记录一些自…

c++语法之函数重载

引例 我们在C语言里面写add函数的时候&#xff0c;只能支持一种类型的相加&#xff0c;除非我们创建多个add函数&#xff1a; 但是这样写并不方便&#xff0c;于是就有了c的函数重载。 函数重载 函数重载就是可以将多个参数类型、顺序、数量不同&#xff0c;实现逻辑相同的函…

Linux——开发工具

1.yum yum是centos中的一个软件下载安装管理客户端&#xff0c;可以下载需要的软件或者解决依赖关系问题&#xff08;如动态库&#xff09;。程序都是来源于一段源代码&#xff0c;为了方便下载&#xff0c;源代码被提前在不同的环境下编译好生成对应的yum软件包&#xff0c;存…