时序预测 | MATLAB实现WOA-CNN-GRU鲸鱼算法优化卷积门控循环单元时间序列预测

时序预测 | MATLAB实现WOA-CNN-GRU鲸鱼算法优化卷积门控循环单元时间序列预测

目录

    • 时序预测 | MATLAB实现WOA-CNN-GRU鲸鱼算法优化卷积门控循环单元时间序列预测
      • 预测效果
      • 基本介绍
      • 模型描述
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

时序预测 | MATLAB实现WOA-CNN-GRU鲸鱼算法优化卷积门控循环单元时间序列预测,运行环境Matlab2020b及以上。优化正则化率、学习率、隐藏层单元数。
1.MATLAB实现WOA-CNN-GRU鲸鱼算法优化卷积门控循环单元时间序列预测
2.单变量时间序列预测;
3.多指标评价,评价指标包括:R2、MAE、MSE、RMSE等,代码质量极高;
4.鲸鱼算法优化参数为:学习率,隐含层节点,正则化参数;
5.excel数据,方便替换,运行环境2020及以上。

模型描述

WOA-CNN-GRU鲸鱼算法是一种用于优化卷积门控循环单元 ( CNN-GRU) 模型的预测方法。CNN-GRU是一种结合了卷积神经网络 (CNN) 和门控循环单元 (GRU) 的模型。
鲸鱼算法 (Whale Optimization Algorithm, WOA) 是一种基于鲸鱼行为的优化算法,它模拟了鲸鱼在海洋中寻找食物的行为,具有全局搜索能力和高收敛速度的优点。将WOA算法应用于CNN-GRU模型的优化中,可以提高模型的预测准确度和鲁棒性。该算法的基本步骤如下:

  • 初始化模型参数和WOA算法参数。
  • 对于每个鲸鱼个体,根据当前位置计算适应度值,并根据当前最优个体更新WOA算法参数。
  • 根据更新后的WOA算法参数,对CNN-GRU模型进行参数优化,并计算模型的预测误差。
  • 根据模型预测误差调整WOA算法参数,再次对CNN-GRU模型进行参数优化。重复步骤2到4,直到达到预设的停止条件。
  • 该算法的优点在于,它将 WOA算法的全局搜索能力和高收敛速度与CNN-GRU模型的序列建模能力相结合,可以有效提高模型的预测准确度和鲁棒性。同时,该算法还可以适用于多输入单输出的回归预测问题,如图像序列预测和时间序列预测等。

程序设计

  • 完整源码和数据获取方式1:私信博主回复WOA-CNN-GRU鲸鱼算法优化卷积门控循环单元时间序列预测
  • 完整程序和数据下载方式2(订阅《组合优化》专栏,同时获取《组合优化》专栏收录的任意8份程序,数据订阅后私信我获取):WOA-CNN-GRU鲸鱼算法优化卷积门控循环单元时间序列预测
%%  获取最优种群
   for j = 1 : SearchAgents
       if(fitness_new(j) < GBestF)
          GBestF = fitness_new(j);
          GBestX = X_new(j, :);
       end
   end
   
%%  更新种群和适应度值
   pop_new = X_new;
   fitness = fitness_new;

%%  更新种群 
   [fitness, index] = sort(fitness);
   for j = 1 : SearchAgents
      pop_new(j, :) = pop_new(index(j), :);
   end

%%  得到优化曲线
   curve(i) = GBestF;
   avcurve(i) = sum(curve) / length(curve);
end

%%  得到最优值
Best_pos = GBestX;
Best_score = curve(end);

%%  得到最优参数
NumOfUnits       =abs(round( Best_pos(1,3)));       % 最佳神经元个数
InitialLearnRate =  Best_pos(1,2) ;% 最佳初始学习率
L2Regularization = Best_pos(1,1); % 最佳L2正则化系数
% 
inputSize = k;
outputSize = 1;  %数据输出y的维度  
%  参数设置
opts = trainingOptions('adam', ...                    % 优化算法Adam
    'MaxEpochs', 20, ...                              % 最大训练次数
    'GradientThreshold', 1, ...                       % 梯度阈值
    'InitialLearnRate', InitialLearnRate, ...         % 初始学习率
    'LearnRateSchedule', 'piecewise', ...             % 学习率调整
    'LearnRateDropPeriod', 6, ...                     % 训练次后开始调整学习率
    'LearnRateDropFactor',0.2, ...                    % 学习率调整因子
    'L2Regularization', L2Regularization, ...         % 正则化参数
    'ExecutionEnvironment', 'gpu',...                 % 训练环境
    'Verbose', 0, ...                                 % 关闭优化过程
    'SequenceLength',1,...
    'MiniBatchSize',10,...
    'Plots', 'training-progress');                    % 画出曲线

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/78553.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Linux 网络发包流程

哈喽大家好&#xff0c;我是咸鱼 之前咸鱼在《Linux 网络收包流程》一文中介绍了 Linux 是如何实现网络接收数据包的 简单回顾一下&#xff1a; 数据到达网卡之后&#xff0c;网卡通过 DMA 将数据放到内存分配好的一块 ring buffer 中&#xff0c;然后触发硬中断CPU 收到硬中…

nn.embedding会被反向传播更新吗?

https://developer.aliyun.com/article/1191215 这样是不可更新&#xff0c;但被我注释掉了。

[oneAPI] 手写数字识别-VAE

[oneAPI] 手写数字识别-VAE oneAPIVAE模型实现手写数字识别任务定义使用包定义参数加载数据VAE模型与介绍训练过程结果 比赛&#xff1a;https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI&#xff1a;https://devcloud.intel.com/one…

记录一下基于jeecg-boot3.0的待办消息移植记录

因为之前没有记录&#xff0c;所以还要看代码进行寻找&#xff0c;比较费劲&#xff0c;所以今天记录一下&#xff1a; 1、后端 SysAnnouncementController 下面函数增加待办的几个显示内容给前端用 具体代码如下&#xff1a; /*** 功能&#xff1a;补充用户数据&#xff0c…

Nginx 解决api跨域问题

环境: nginx 1.22.1 宝塔8.0 php lavarel 在nginx里加入下面的设置 #这里填*就是任何域名都允许跨域add_header Access-Control-Allow-Origin "*";#CORS请求默认不发送Cookie和HTTP认证信息。但是如果要把Cookie发到服务器&#xff0c;要服务器同意&#xff0c…

JVM——类的生命周期

文章目录 类加载过程加载验证准备解析初始化 卸载 一个类的完整生命周期如下&#xff1a; 类加载过程 Class 文件需要加载到虚拟机中之后才能运行和使用&#xff0c;那么虚拟机是如何加载这些 Class 文件呢&#xff1f; 系统加载 Class 类型的文件主要三步:加载->连接->…

微服务实战项目-学成在线-项目部署

微服务实战项目-学成在线-项目部署 1 什么是DevOps 一个软件的生命周期包括&#xff1a;需求分析阶、设计、开发、测试、上线、维护、升级、废弃。 通过示例说明如下&#xff1a; 1、产品人员进行需求分析 2、设计人员进行软件架构设计和模块设计。 3、每个模块的开发人员…

软考笔记——10.项目管理

进度管理 进度管理就是采用科学的方法&#xff0c;确定进度目标&#xff0c;编制进度计划和资源供应计划&#xff0c;进行进度控制&#xff0c;在与质量、成本目标协调的基础上&#xff0c;实现工期目标。 具体来说&#xff0c;包括以下过程&#xff1a; (1) 活动定义&#…

MES生产管理系统如何与ERP系统集成

MES生产管理系统和ERP企业管理系统是制造企业信息化的重要组成部分&#xff0c;它们在生产管理、资源计划和业务流程等方面发挥着重要作用。实现MES与ERP系统的集成&#xff0c;可以更好地优化企业生产流程&#xff0c;提高生产效率和降低成本。本文将探讨MES管理系统解决方案如…

传感网应用开发实训室建设方案

传感网应用开发实训室概述 物联网是我国战略性新兴产业的重要组成部分&#xff0c;《物联网“十二五”发展规划》圈定了10大领域重点示范工程&#xff0c;第一个关键技术创新工程提出“充分发挥企业主体作用&#xff0c;积极利用高校和研究所实验室的现有研究成果&#xff0c;在…

Vue 根据Upload组件的before-upload方法,限制用户上传文件的类型及大小

文章目录 一、前端 Vue Upload组件的before-upload方法二&#xff0c;使用方法 一、前端 Vue Upload组件的before-upload方法 判断用户上传的文件是否符合要求&#xff0c;可以根据文件类型或者大小做出限制。 文件类型值docapplication/msworddocxapplication/vnd.openxmlform…

VS2019+Qt5.15.2 编译 QtWebEngine(带音视频解码)

前言 QtWebEngine 是 Qt 框架的一部分&#xff0c;用于构建现代 Web 浏览器功能。本篇教程将向您展示如何在 Visual Studio 2019 中编译 QtWebEngine 5.15.2 源码&#xff0c;并配置以支持音视频解码功能。 准备工作 1、源码下载 2、源码修改&#xff0c;参考Qt Code Review…

【Python】使用python解析someip报文,以someip格式打印报文

文章目录 1.安装scapy库2.示例 1.安装scapy库 使用 pip 安装 scapy 第三方库&#xff0c;打开 cmd&#xff0c;输入以下命令&#xff1a; pip install scapy出现如图所示&#xff0c;表示安装成功&#xff1a; 2.示例 要解析someip格式报文&#xff0c;需要导入someip模块&a…

【electron】electron项目创建的方式:

文章目录 【1】npm init quick-start/electron&#xff08;推荐&#xff09;【2】 克隆仓库&#xff0c;快速启动【3】 通过脚手架搭建项目【4】 手动创建项目 【Electron官网】https://www.electronjs.org/zh/docs/latest/api/app 【1】npm init quick-start/electron&#xf…

Mysql_5.7下载安装与配置基础操作教程

目录 一、Mysql57下载与安装 二、尝试登录Mysql 三、配置Mysql环境变量 一、Mysql57下载与安装 首先&#xff0c;进入Mysql下载官网&#xff1a;MySQL Community Downloads 随后&#xff0c;选择版本5.7.43&#xff0c;系统选择Windows&#xff0c;随后下方会出现两个下载选…

又双叒叕!五大数据库全方位注释,抗性宏基因组分析项目再次升级!

基于宏基因组测序的抗性基因分析是目前ARGs分析的重要手段&#xff0c;五大数据库全面注释分析&#xff0c;一网打尽ARGs、MRGs、BRGs、MGEs、致病菌注释。 项目报告不仅包含抗性基因的多样性、丰度和分布模式&#xff0c;还能获得包括抗性组变化驱动因素、指示基因识别、抗性组…

Python爬虫:js逆向调式操作及调式中遇到debugger问题

Python爬虫:js逆向调式操作及调式中遇到debugger问题 1. 前言2. js逆向调式操作2.1 DOM事件断点2.2 XHR/提取断点(用于请求接口参数加密处理)2.3 请求返回的数据是加密的2.4 hook定位参数 3. 调式中遇到debugger问题3.1 解决方式(一律不在此处暂停)3.2 问题&#xff1a;点击一律…

企业到什么阶段需要进行数字化转型?

数字化转型并不是一个一刀切的过程&#xff0c;也不存在普遍规定企业必须在何时经历数字化转型的特定阶段。然而&#xff0c;有一些常见的触发因素或情况往往会促使企业考虑或踏上数字化转型之旅&#xff1a; 1.不断变化的商业格局&#xff1a;当企业面临客户行为、市场动态或…

【Alibaba中间件技术系列】「RocketMQ技术专题」小白专区之领略一下RocketMQ基础之最!

应一些小伙伴们的私信&#xff0c;希望可以介绍一下RocketMQ的基础&#xff0c;那么我们现在就从0开始&#xff0c;进入RocketMQ的基础学习及概念介绍&#xff0c;为学习和使用RocketMQ打好基础&#xff01; RocketMQ是一款快速地、可靠地、分布式、容易使用的消息中间件&#…

基于X86六轮差速移动机器人运动控制器设计与实现(二)规划控制算法

带输入约束的 MPC 路径跟踪控制 MPC 算法是一种基于控制对象模型的控制方法&#xff0c;其优势在于在控制中考虑了 系统的多种物理约束&#xff0c;同时基于模型与当前机器人的反馈信息预估出未来机器人 位姿信息的处理方法可以解决控制迟滞的问题。 4.1 MPC 路径跟踪控…