目录
- 一: 🔥继承的概念及定义
- 1.1 继承的概念
- 1.2 继承定义
- 1.2.1 定义格式
- 1.2.2 继承关系和访问限定符
- 1.2.3 继承基类成员访问方式的变化
- 二:🔥基类和派生类对象赋值转换
- 三:🔥继承中的作用域
- 四:🔥派生类的默认成员函数
- 五:🔥继承与友元
- 六:🔥继承与静态成员
- 七:🔥复杂的菱形继承及菱形虚拟继承
- 八:🔥继承的总结和反思
- 九:🔥笔试面试题
一: 🔥继承的概念及定义
1.1 继承的概念
继承(面向对象的三大特性之一
) 机制是面向对象程序设计 使代码可以复用
的最重要的手段,它允许程序员在保持原有类特性的基础上进行扩展,增加功能,这样产生新的类,称派生类。继承呈现了面向对象程序设计的层次结构,体现了由简单到复杂的认知过程。以前我们接触的复用都是函数复用,继承是类设计层次的复用。
举个小例子:
class Person
{
public:
void Print()
{
cout << "name:" << _name << endl;
cout << "age:" << _age << endl;
}
protected:
string _name = "peter"; // 姓名
int_age = 18; //年龄
};
class Student : public Person
{
protected:
int _stuid; // 学号
};
class Teacher : public Person
{
protected:
int _jobid; // 工号
};
int main()
{
Student s;
Teacher t;
s.Print();
t.Print();
return 0;
}
打印结果:name:"peter" age:18
name:"peter" age:18
- 这里定义了一个人的类型, 继承后父类的Person的成员 (成员函数+ 成员变量) 都会
变成子类的一部分
。- 这里体现出了 Student和Teacher复用了Person的成员。变量得到了复用。调用Print可以看到成员函数的复用。
1.2 继承定义
1.2.1 定义格式
- 下面我们看到Person是父类,也称作基类。Teacher是子类,也称作派生类。
1.2.2 继承关系和访问限定符
1.2.3 继承基类成员访问方式的变化
看起来很复杂,实际上总结一下很容易理解:
- 基类private成员在派生类中无论以什么方式继承都是不可见的。这里的不可见是指基类的
私有成员还是被继承到了派生类对象中
,但是语法上限制派生类对象不管在类里面还是类外面,都不能去访问它(但是可以间接访问)。 - 基类private成员在派生类中是不能被访问,如果基类成员不想在类外直接被访问,但需要在派生类中能访问,就定义为protected。可以看出
保护成员限定符是因继承才出现的
。 - 实际上面的表格我们进行一下总结会发现,基类的私有成员在子类都是不可见。基类的其他成员在子类的访问方式 == Min(成员在基类的访问限定符,继承方式),public > protected > private。
使用关键字class时默认的继承方式是private,使用struct时默认的继承方式是public
,不过,最好显示的写出继承方式。- 在实际运用中一般使用都是public继承,几乎很少使protetced / private继承,也不提倡使用protetced / private继承,因为protetced / private继承下来的成员都只能在派生类的类里面使用,实际中扩展维护性不强。
二:🔥基类和派生类对象赋值转换
- 派生类对象 可以赋值给 基类的对象 / 基类的指针 / 基类的引用。这里有个形象的说法叫切片或者切割。寓意把派生类中父类那部分切来赋值过去。
- 基类对象不能赋值给派生类对象。
- 基类的指针或者引用可以通过强制类型转换赋值给派生类的指针或者引用(
指向派生类中对应的父类的那一部分
)。但是必须是基类的指针是指向派生类对象时才是安全的。这里基类如果是多态类型,可以使用RTTI(Run- Time Type Information)的dynamic_cast 来进行识别后进行安全转换。(ps:这个我们后面再讲解,这里先了解一下)
class Person
{
protected :
string _name; // 姓名 string _sex; // 性别 int _age; // 年龄
};
class Student : public Person
{
public :
int _No ; // 学号
};
void Test () {
Student sobj ;
// 1.子类对象可以赋值给父类对象 / 指针 / 引用
Person pobj = sobj ;
Person* pp = &sobj;
Person& rp = sobj;
// 2.基类对象不能赋值给派生类对象 sobj = pobj;(缺东西了)
// 3.基类的指针可以通过强制类型转换赋值给派生类的指针
注意:这里的强制类型转换不一样 不会产生临时变量 可以理解为是一种天然的新方式
pp = &sobj
Student* ps1 = (Student*)pp; // 这种情况转换时可以的。
ps1->_No = 10;
pp = &pobj;
Student* ps2 = (Student*)pp; // 这种情况转换时虽然可以,但是会存在越界访问的问题
ps2->_No = 10;
}
三:🔥继承中的作用域
- 在继承体系中基类和派生类都有独立的作用域。
- 子类和父类中有同名成员,子类成员将屏蔽父类对同名成员的直接访问,这种情况叫隐藏,也叫重定义。(在子类成员函数中,可以使用 基类::基类成员 显示访问)
- 需要注意的是如果是成员函数的隐藏,只需要函数名相同就构成隐藏(
注意:不是重载!
)。 - 注意在实际中在继承体系里面最好不要定义同名的成员。
🌰子一:Student的_num和Person的_num构成隐藏关系,可以看出这样代码虽然能跑,但是非常容易混淆
class Person
{
protected:
string _name = "小李子"; // 姓名
int _num = 111; // 身份证号
};
class Student : public Person
{
public:
void Print()
{
cout << " 姓名:" << _name << endl;
cout << " 学号:" << _num << endl; // 隐藏/重定义
cout << " 学号:" << Person::_num << endl;
}
protected:
int _num = 999; // 学号
};
🌰子二:只需要函数名相同就构成隐藏 这里找不到对应的函数
class A
{
public:
void fun()
{
cout << "func()" << endl;
}
};
class B : public A
{
public:
void fun(int i)
{
cout << "func(int i)->" << i << endl;
}
};
int main()
{
B bb;
bb.fun();
return 0;
}
下面哪个是正确的( B 和 D )
A.fun构成重载
B.fun构成隐藏
C.fun构成重写
D.编译报错
E.运行报错
四:🔥派生类的默认成员函数
6个默认成员函数,“默认”的意思就是指我们不写,编译器会变我们自动生成一个,那么在派生类中,这几个成员函数是如何生成的呢?
- 派生类的构造函数必须调用基类的构造函数初始化基类的那一部分成员。如果基类没有默认 的构造函数,则必须在派生类构造函数的初始化列表阶段显示调用。
- 派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化。
- 派生类的operator=必须要调用基类的operator=完成基类的复制。
- 派生类的析构函数会在被调用完成后自动调用基类的析构函数清理基类成员。因为这样才能保证派生类对象先清理派生类成员再清理基类成员的顺序。
- 派生类对象初始化先调用基类构造再调派生类构造。
- 派生类对象析构清理先调用派生类析构再调基类的析构。
- 因为后续一些场景析构函数需要构成重写,重写的条件之一是函数名相同(这个我们后面会讲解)。那么编译器会对析构函数名进行特殊处理,处理成destrutor(),所以父类析构函数不加 virtual的情况下,子类析构函数和父类析构函数构成隐藏关系。
综合例子如下:
// 这个是基类
class Person
{
public:
Person(const char* name = "peter")
: _name(name)
{
cout << "Person()" << endl;
}
Person(const Person& p)
: _name(p._name)
{
cout << "Person(const Person& p)" << endl;
}
Person& operator=(const Person & p)
{
cout << "Person operator=(const Person& p)" << endl;
if (this != &p)
_name = p._name;
return *this;
}
~Person()
{
cout << "~Person()" << endl;
}
protected:
string _name; // 姓名
};
// 这个是派生类
class Student : public Person
{
public:
Student(const char* name = "", int x = 0, const char* address = "")
:_x(x)
,_address(address)
,_name(Person::_name+'x')
,Person(name)
{}
|例:派生类的拷贝构造函数必须调用基类的拷贝构造完成基类的拷贝初始化
Student(const Student& st)
:Person(st)
,_x(st._x)
,_address(st._address)
{}
|例:派生类的operator=必须要调用基类的operator=完成基类的复制。
Student& operator=(const Student &st)
{
if (this != &st)
{
Person::operator= (st); |注意这里如果不显示写那么就成了隐藏 会一直调用自己
_x = st._x;
_address = st._address;
}
return *this;
}
~Student() | 析构时先子后父
{
//Person::~Person(); 会自动调用
cout << "~Student()" << endl;
}
protected :
int _x = 1;
string _address = "湖南";
string _name;
};
五:🔥继承与友元
友元关系不能继承,也就是说基类友元不能访问子类私有和保护成员
,形象的说就是你父亲的朋友不是你的朋友
六:🔥继承与静态成员
基类定义了static静态成员,则整个继承体系里面只有一个这样的成员。无论派生出多少个子 类,都只有一个static成员实例 。
七:🔥复杂的菱形继承及菱形虚拟继承
-
单继承 : 一个子类只有一个直接父类时称这个继承关系为单继承
-
多继承 : 一个子类有两个或以上直接父类时称这个继承关系为多继承
菱形继承:菱形继承是多继承的一种特殊情况。
-
菱形继承:菱形继承是多继承的一种特殊情况。
菱形继承的问题:从下面的对象成员模型构造,可以看出菱形继承有数据冗余和二义性的问题。
class Person
{
public :
string _name ; // 姓名
};
class Student : public Person
{
protected :
int _num ; //学号
};
class Teacher : public Person
{
protected :
int _id ; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected :
string _majorCourse ; // 主修课程
};
void Test () {
| 这样会有二义性无法明确知道访问的是哪一个
Assistant a ;
a._name = "peter";
| 需要显示指定访问哪个父类的成员可以解决二义性问题,但是数据冗余问题无法解决 a.Student::_name = "xxx";
a.Teacher::_name = "yyy";
}
- 解决方法:虚拟继承可以解决菱形继承的二义性和数据冗余的问题。如上面的继承关系,在Student和 Teacher的继承Person时使用(virtual)虚拟继承,即可解决问题。需要注意的是,虚拟继承不要在其他地方去使用。
class Person
{
public :
string _name ; // 姓名 };
class Student : virtual public Person
{
protected :
int _num ; //学号 };
class Teacher : virtual public Person
{
protected :
int _id ; // 职工编号
};
class Assistant : public Student, public Teacher
{
protected :
string _majorCourse ; // 主修课程 };
void Test () {
Assistant a ;
a._name = "peter";
}
虚拟继承解决数据冗余和二义性的原理(后面会更新到哒
)
八:🔥继承的总结和反思
- 很多人说C++语法复杂,其实多继承就是一个体现。有了多继承,就存在菱形继承,有了菱 形继承就有菱形虚拟继承,底层实现就很复杂。所以一般不建议设计出多继承,一定不要设 计出菱形继承。否则在复杂度及性能上都有问题。
- 多继承可以认为是C++的缺陷之一,很多后来的语言都没有多继承,如Java。
- 继承和组合
- public继承是一种is-a的关系。也就是说每个派生类对象都是一个基类对象。 组合是一种has-a的关系。假设B组合了A,每个B对象中都有一个A对象。
- 优先使用对象组合,而不是类继承 。
- 继承允许你根据基类的实现来定义派生类的实现。这种通过生成派生类的复用通常被称 为白箱复用(white-box reuse)。术语“白箱”是相对可视性而言:在继承方式中,基类的 内部细节对子类可见 。继承一定程度破坏了基类的封装,基类的改变,对派生类有很 大的影响。派生类和基类间的依赖关系很强,耦合度高。
- 对象组合是类继承之外的另一种复用选择。新的更复杂的功能可以通过组装或组合对象 来获得。对象组合要求被组合的对象具有良好定义的接口。这种复用风格被称为黑箱复 用(black-box reuse),因为对象的内部细节是不可见的。对象只以“黑箱”的形式出现。 组合类之间没有很强的依赖关系,耦合度低。优先使用对象组合有助于你保持每个类被 封装。
- 实际尽量多去用组合。组合的耦合度低,代码维护性好。不过继承也有用武之地的,有 些关系就适合继承那就用继承,另外要实现多态,也必须要继承。类之间的关系可以用 继承,可以用组合,就用组合。
九:🔥笔试面试题
看完了以上博客,刚好来做几道题锻炼一下, 写出来的小伙伴可以将答案发在评论区噢!!如果有任何疑问都可以私信我,希望我们共同进步, 有错误还请在评论区指正!学,无止境。
- 什么是菱形继承? 菱形继承的问题是什么?
- 什么是菱形虚拟继承? 如何解决数据冗余和二义性的
- 继承和组合的区别? 什么时候用继承?什么时候用组合?