【大模型LLM面试合集】大语言模型基础_Word2Vec

Word2Vec

文章来源:Word2Vec详解 - 知乎 (zhihu.com)

1.Word2Vec概述

Word2Vec是google在2013年推出的一个NLP工具,它的特点是能够将单词转化为向量来表示,这样词与词之间就可以定量的去度量他们之间的关系,挖掘词之间的联系

用词向量来表示词并不是Word2Vec的首创,在很久之前就出现了。最早的词向量采用One-Hot编码,又称为一位有效编码,每个词向量维度大小为整个词汇表的大小,对于每个具体的词汇表中的词,将对应的位置置为1。比如下面的5个词组成的词汇表,

在这里插入图片描述

采用One-Hot编码方式来表示词向量非常简单,但缺点也是显而易见的,

  • 一方面实际使用的词汇表很大,经常是百万级以上,这么高维的数据处理起来会消耗大量的计算资源与时间。
  • 另一方面,One-Hot编码中所有词向量之间彼此正交,没有体现词与词之间的相似关系

Distributed representation可以解决One-Hot编码存在的问题,它的思路是通过训练,将原来One-Hot编码的每个词都映射到一个较短的词向量上来,而这个较短的词向量的维度可以由自己在训练时根据任务需要来指定。

下图是采用Distributed representation的一个例子,将词汇表里的词用 “Royalty”, “Masculinity”, “Femininity” 和 "Age"4个维度来表示,King这个词对应的词向量可能是(0.99,0.99,0.05,0.7)。当然在实际情况中,并不能对词向量的每个维度做一个很好的解释。

在这里插入图片描述

有了用Distributed Representation表示的较短的词向量,就可以较容易的分析词之间的关系了,比如将词的维度降维到2维,有一个有趣的研究表明,用下图的词向量表示词时,可以发现:

在这里插入图片描述

在这里插入图片描述

可见只要得到了词汇表里所有词对应的词向量,那么就可以做很多有趣的事情了。不过,怎么训练才能得到合适的词向量呢?针对这个问题,Google的Tomas Mikolov在他的论文中提出了CBOWSkip-gram两种神经网络模型。

2.Word2Vec原理

Word2Vec 的训练模型本质上是只具有一个隐含层的神经元网络(如下图)。

在这里插入图片描述

它的输入是采用One-Hot编码的词汇表向量,它的输出也是One-Hot编码的词汇表向量。

使用所有的样本,训练这个神经元网络,等到收敛之后,从输入层到隐含层的那些权重,便是每一个词的采用Distributed Representation的词向量。比如,上图中单词的Word embedding后的向量便是矩阵 W V × N W_{V×N} WV×N 的第i行的转置。这样就把原本维数为V的词向量变成了维数为N的词向量(N远小于V),并且词向量间保留了一定的相关关系。

Google的Mikolov在关于Word2Vec的论文中提出了CBOWSkip-gram两种模型,**CBOW适合于数据集较小的情况,而Skip-Gram**在大型语料中表现更好

  • 其中CBOW如下图左部分所示,使用围绕目标单词的其他单词(语境)作为输入,在映射层做加权处理后输出目标单词。
  • CBOW根据语境预测目标单词不同,Skip-gram根据当前单词预测语境,如下图右部分所示。

假如有一个句子“There is an apple on the table”作为训练数据,CBOW的输入为(is,an,on,the),输出为apple。而Skip-gram的输入为apple,输出为(is,an,on,the)。

在这里插入图片描述

3.CBOW

在这里插入图片描述

  1. 输入层:上下文单词的One-Hot编码词向量,V为词汇表单词个数,C为上下文单词个数。以上文那句话为例,这里C=4,所以模型的输入是(is,an,on,the)4个单词的One-Hot编码词向量。
  2. 初始化一个权重矩阵 W V × N W_{V×N} WV×N ,然后用所有输入的One-Hot编码词向量左乘该矩阵,得到维数为N的向量 ω 1 , ω 2 , … , ω c ω_1,ω_2,…,ω_c ω1,ω2,,ωc ,这里的N根据任务需要设置。
  3. 将所得的向量 ω 1 , ω 2 , … , ω c ω_1,ω_2,…,ω_c ω1,ω2,,ωc 相加求平均作为隐藏层向量h
  4. 初始化另一个权重矩阵 W N × V ′ W_{N×V}^{'} WN×V ,用隐藏层向量 h h h左乘 W N × V ′ W_{N×V}^{'} WN×V ,再经激活函数处理得到 V V V维的向量 y y y y y y的每一个元素代表相对应的每个单词的概率分布。
  5. y y y中概率最大的元素所指示的单词为预测出的中间词(target word)与true label的One-Hot编码词向量做比较,误差越小越好(根据误差更新两个权重矩阵)

在训练前需要定义好损失函数(一般为交叉熵代价函数),采用梯度下降算法更新 W W W W ′ W' W

训练完毕后,输入层的每个单词与矩阵W相乘得到的向量的就是Distributed Representation表示的词向量,也叫做word embedding。因为One-Hot编码词向量中只有一个元素为1,其他都为0,所以第i个词向量乘以矩阵 W W W得到的就是矩阵的第i行,所以这个矩阵也叫做look up table,有了look up table就可以免去训练过程,直接查表得到单词的词向量了。

4.Skip-gram

在这里插入图片描述

在前面的章节中,已经介绍过Skip-Gram是给定input word来预测上下文,其模型结构如上图所示。

它的做法是,将一个词所在的上下文中的词作为输出,而那个词本身作为输入,也就是说,给出一个词,希望预测可能出现的上下文的词。通过在一个大的语料库训练,得到一个从输入层到隐含层的权重模型。“apple”的上下文词是(’there’, ’is’, ’an’, ’on’, ’the’, ’table’ ).那么以apple的One-Hot词向量作为输入,输出则是(’there’, ’is’, ’an’, ’on’, ’the’, ’table’)的One-Hot词向量。训练完成后,就得到了每个词到隐含层的每个维度的权重,就是每个词的向量(和CBOW中一样)。接下来具体介绍如何训练神经网络。

假如有一个句子“There is an apple on the table”。

  1. 首先选句子中间的一个词作为输入词,例如选取“apple”作为input word;
  2. 有了input word以后,再定义一个叫做skip_window的参数,它代表着从当前input word的一侧(左边或右边)选取词的数量。如果设置skip_window=2,那么最终获得窗口中的词(包括input word在内)就是[‘is’,’an’,’apple’,’on’,’the’ ]。skip_window=2代表着选取左input word左侧2个词和右侧2个词进入窗口,所以整个窗口大小span=2x2=4。另一个参数叫num_skips,它代表着从整个窗口中选取多少个不同的词作为output word,当skip_window=2num_skips=2时,将会得到两组 (input word, output word) 形式的训练数据,即 (‘apple’, ‘an’),(‘apple’, ‘one’)。
  3. 神经网络基于这些训练数据中每对单词出现的次数习得统计结果,并输出一个概率分布,这个概率分布代表着到我们词典中每个词有多大可能性跟input word同时出现。举个例子,如果向神经网络模型中输入一个单词“中国“,那么最终模型的输出概率中,像“英国”, ”俄罗斯“这种相关词的概率将远高于像”苹果“,”蝈蝈“非相关词的概率。因为”英国“,”俄罗斯“在文本中更大可能在”中国“的窗口中出现。我们将通过给神经网络输入文本中成对的单词来训练它完成上面所说的概率计算。
  4. 通过梯度下降和反向传播更新矩阵 W W W
  5. W W W中的行向量即为每个单词的Word embedding表示

在前面两节中介绍了CBOWSkip-gram最理想情况下的实现,即训练迭代两个矩阵 W W W W ’ W’ W,之后在输出层采用softmax函数来计算输出各个词的概率。但在实际应用中这种方法的训练开销很大,不具有很强的实用性,为了使得模型便于训练,有学者提出了**Hierarchical SoftmaxNegative Sampling**两种改进方法。

5.Hierarchical Softmax

Hierarchical Softmax对原模型的改进主要有两点,

  1. 第一点是从输入层到隐藏层的映射,没有采用原先的与矩阵W相乘然后相加求平均的方法,而是直接对所有输入的词向量求和。假设输入的词向量为(0,1,0,0)和(0,0,0,1),那么隐藏层的向量为(0,1,0,1)。
  2. 第二点改进是采用哈夫曼树来替换了原先的从隐藏层到输出层的矩阵W’。哈夫曼树的叶节点个数为词汇表的单词个数V,一个叶节点代表一个单词,而从根节点到该叶节点的路径确定了这个单词最终输出的词向量。

在这里插入图片描述

具体来说,这棵哈夫曼树除了根结点以外的所有非叶节点中都含有一个由参数θ确定的sigmoid函数,不同节点中的θ不一样。训练时隐藏层的向量与这个sigmoid函数进行运算,根据结果进行分类,若分类为负类则沿左子树向下传递,编码为0;若分类为正类则沿右子树向下传递,编码为1。

6.Negative Sampling

尽管哈夫曼树的引入为模型的训练缩短了许多开销,但对于一些不常见、较生僻的词汇,哈夫曼树在计算它们的词向量时仍然需要做大量的运算

负采样是另一种用来提高Word2Vec效率的方法,它是基于这样的观察:训练一个神经网络意味着使用一个训练样本就要稍微调整一下神经网络中所有的权重,这样才能够确保预测训练样本更加精确,如果能设计一种方法每次只更新一部分权重,那么计算复杂度将大大降低

将以上观察引入Word2Vec就是:当通过(”fox”, “quick”)词对来训练神经网络时,回想起这个神经网络的“标签”或者是“正确的输出”是一个one-hot向量。也就是说,对于神经网络中对应于”quick”这个单词的神经元对应为1,而其他上千个的输出神经元则对应为0。

使用负采样,通过随机选择一个较少数目(比如说5个)的“负”样本来更新对应的权重。(在这个条件下,“负”单词就是希望神经网络输出为0的神经元对应的单词)。并且仍然为“正”单词更新对应的权重(也就是当前样本下”quick”对应的神经元仍然输出为1)。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/784350.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

运维系列.Nginx配置中的高级指令和流程控制

运维专题 Nginx配置中的高级指令和流程控制 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/…

李彦宏: 开源模型是智商税|马斯克: OpenAI 闭源不如叫 CloseAI

在 2024 年世界人工智能大会(WAIC 2024)上,百度创始人、董事长兼首席执行官李彦宏发表对开源模型的评价。 李彦宏认为:开源模型实际上是一种智商税,而闭源模型才是人工智能(AI)行业的未来。 马…

【时间复杂度的计算】

目录 一、时间复杂的的概念1、定义2、基本计算规则 二、单层循环时间复杂度计算公式三、双层循环时间复杂度计算公式四、多层循环时间复杂度计算公式1、法一:抽象为计算三维物体的体积2、法二:列式求和 一、时间复杂的的概念 1、定义 时间复杂度&#…

java 参数传递(尤其注意参数是对象的情况)

8大基本数据类型为 值传递 类和数组为 引用传递,传递的是地址 但是要注意虽然类是引用传递,但是要注意,调用方法是新开一个栈 因此如果进行p null或者 Person p new Person()等语句,要格外注意: 如果主函数再次输出…

C/C++内存分布

1.内存分布简略图 2.全局变量和静态变量的区别 (1)局部静态变量:存储在数据段中,局部静态变量的作用域在当前函数中,出了函数就不能使用该变量,但局部静态变量的生命周期是在整个程序间,局部静态变量要运行到这一行才…

贝叶斯估计(1):期末大乱炖

写在前面! 1 先验分布和后验分布 三种信息:总体信息、样本信息、先验信息 总体信息:“总体是正态分布”;样本信息:总体抽取的样本提供的信息,是最新鲜的信息;先验信息:在抽样之前就…

019-GeoGebra中级篇-GeoGebra的坐标系

GeoGebra作为一款强大的数学软件,支持多种坐标系的使用,包括但不限于:笛卡尔坐标系(Cartesian Coordinate System)、极坐标系(Polar Coordinate System)、参数坐标系(Parametric Coo…

第二证券股市知识:股票填权是怎么回事?利好还是利空?

1、股票填权的含义 股票填权是指在除权除息之后的一段时刻内,假设多数投资者看好该个股,股票的价格超过除权除息的基准价就叫做填权。上市公司假设能持续分红,就会向市场传递积极信号,招引更多投资者买入,越来越多的投…

Thingsboard 系列之通过 ESP8266+MQTT 模拟设备上报数据到平台

前置工作 Thingsboard平台ESP 8266 NodeMCU 开发板IDE: Arduino 或 VScode 均可 服务端具体对接流程 系统管理员账号通过 Thingsboard 控制面板创建租户等信息并以租户账号登录 实体 —> 设备维护具体设备信息 创建完成后通过管理凭据修改或直接复制访问令牌…

磁致伸缩液位计的应用领域

磁致伸缩液位计作为一种高精度、高稳定性的液位测量设备,在众多行业中都有着广泛的应用。接下来,我们将从多个角度详细探讨磁致伸缩液位计在不同领域的应用情况。 石油化工行业 在石油化工行业中,磁致伸缩液位计主要用于储罐、反应器和管道等…

太实用了吧?手把手教你华为eNSP模拟器桥接真实网络!

号主:老杨丨11年资深网络工程师,更多网工提升干货,请关注公众号:网络工程师俱乐部 晚上好,我的网工朋友。 今天聊聊eNSP桥接正式网络,就是把eNSP桥接进真实的网络,利用我们的物理网卡通过实体路…

数学建模论文写作文档word

目录 1. 摘要写法1.1 确定题目与方法1.2 编写开头段落1.3 填写问题一1.4 重复步骤3填写其他问题1.5 编写结尾段落1.6 编写关键词 2. 问题重述2.1 问题背景2.2 问题提出 3. 问题分析4. 问题X模型的建立与求解5. 模型的分析5.1 灵敏度分析5.2 误差分析(主要用于预测类…

linux基础—目录和文件操作

1,列出目录和文件的详细信息 ls: ls -l ls -lt 2,认识文件 第一列 左边的一组排序中,第一个字符是文件的类型,后面9个字符是文件的权限。 第一个字符主要有3种情况: d表示目录、-表示文件,l表示链接 第…

【回溯算法经典题目解析】

1. 什么是回溯算法 回溯算法是⼀种经典的递归算法,通常用于解决组合问题、排列问题和搜索问题等。 回溯算法的基本思想:从一个初始状态开始,按照⼀定的规则向前搜索,当搜索到某个状态⽆法前进时,回退到前⼀个状态&am…

背包问题转换

如何转换成背包问题呢&#xff0c;我们可以把每个质数当成一个重量 #define _CRT_SECURE_NO_WARNINGS #include<bits/stdc.h> using namespace std;#define int long long int record[1005]; void fun() {//record[2] 1;for (int i 2; i < 1000; i) {if (!record[…

JDBC和数据库连接池

1 JDBC概述 1.1 数据持久化 持久化(persistence)&#xff1a;把数据保存到可掉电式存储设备中以供之后使用。大多数情况下&#xff0c;特别是企业级应用&#xff0c;数据持久化意味着将内存中的数据保存到硬盘上加以”固化”&#xff0c;而持久化的实现过程大多通过各种关系数…

鸿蒙语言基础类库:【@ohos.url (URL字符串解析)】

URL字符串解析 说明&#xff1a; 本模块首批接口从API version 7开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。开发前请熟悉鸿蒙开发指导文档&#xff1a;gitee.com/li-shizhen-skin/harmony-os/blob/master/README.md点击或者复制转到。 导入…

第一百四十九节 Java数据类型教程 - Java子字符串、字符串转换

Java数据类型教程 - Java子字符串 获取子字符串 我们可以使用substring()方法来获取字符串的子部分。 我们可以将开始索引作为参数&#xff0c;并返回一个从开始索引开始到字符串结尾的子串。 我们还可以将开始索引和结束索引作为参数。 它返回从开始索引开始的子字符串和小…

使用预加载库优化 PostgreSQL 函数#postgresql认证

在 POSTGRESQL 中执行函数和过程 为了理解 PostgreSQL 的工作原理&#xff0c;我们首先要看一个简单的函数调用。下一个清单显示了一些简单的PostGIS代码&#xff1a; PgSQL test# timing Timing is on. test# SELECT * FROM hans.points WHERE id 1;id │ …

【工具分享】零零信安攻击面管理平台

文章目录 00SEC-ASM™功能介绍功能演示 最近闲来无事&#xff0c;到处网上冲浪&#xff0c;无意间发现了长亭云图攻击面管理平台&#xff0c;无奈需要授权才能使用&#xff0c;于是就找到了平替&#xff1a;零零信安攻击面管理平台。 长亭云图攻击面管理平台&#xff1a;https:…