【Linux】线程池|单例模式|STL、智能指针线程安全|读者写者问题

 > 作者:დ旧言~
> 座右铭:松树千年终是朽,槿花一日自为荣。

> 目标:理解【Linux】线程池|单例模式|STL、智能指针线程安全|读者写者问题。

> 毒鸡汤:有些事情,总是不明白,所以我不会坚持。早安!

> 专栏选自:Linux初阶

> 望小伙伴们点赞👍收藏✨加关注哟💕💕

​​

🌟前言

今天是Linux的最后一片博客,相信大家已经坚持下来了,还是那句话 " 学,然后知不足 "!!!

⭐主体

学习【Linux】线程池|单例模式|STL、智能指针线程安全|读者写者问题咱们按照下面的图解:

​🌙 线程池

线程概念:

一种线程使用模式。线程过多会带来调度开销,进而影响缓存局部性和整体性能。而线程池维护着多个线程,等待着监督管理者分配可并发执行的任务。这避免了在处理短时间任务时创建与销毁线程的代价。线程池不仅能够保证内核的充分利用,还能防止过分调度。可用线程数量应该取决于可用的并发处理器、处理器内核、内存、网络sockets等的数量。

线程池的应用场景:

  1. 需要大量的线程来完成任务,且完成任务的时间比较短。 WEB服务器完成网页请求这样的任务,使用线程池技术是非常合适的。因为单个任务小,而任务数量巨大,你可以想象一个热门网站的点击次数。 但对于长时间的任务,比如一个Telnet连接请求,线程池的优点就不明显了。因为Telnet会话时间比线程的创建时间大多了。
  2. 对性能要求苛刻的应用,比如要求服务器迅速响应客户请求。
  3. 接受突发性的大量请求,但不至于使服务器因此产生大量线程的应用。突发性大量客户请求,在没有线程池情况下,将产生大量线程,虽然理论上大部分操作系统线程数目最大值不是问题,短时间内产生大量线程可能使内存到达极限,出现错误。

线程池示例:

  • 创建固定数量线程池,循环从任务队列中获取任务对象。
  • 获取到任务对象后,执行任务对象中的任务接口。

​🌙 线程池代码

Thread.hpp的简单封装线程,下面我们进行简单的验证:

  • Thread类主要成员变量是线程名,函数,线程参数,参数ID以及对应编号。
  • Thread类提供了一个无参构造,完成对成员变量name的赋值。
  • 同时,对外主要提供了start接口和join接口,对于join接口就是线程等待,而对于start接口就是创建线程的接口,在外部如果调用的话我们需要传入对应的函数以及线程对应的参数。

代码如下:

pragma once

#include <iostream>
#include <string>
#include <functional>
#include <cstring>
#include <cassert>
#include <pthread.h>

namespace ThreadNs
{
    typedef std::function<void *(void *)> func_t;
    const int num = 1024;
    class Thread
    {
    private:
        static void *start_routine(void *args)
        {
            Thread *td = static_cast<Thread *>(args);
            return td->callback();
        }

    public:
        Thread()
        {
            char buffer[num];
            snprintf(buffer, sizeof buffer, "thread-%d", threadnum++);
            _name = buffer;
        }

        void start(func_t func, void *args)
        {
            _func = func;
            _args = args;
            int n = pthread_create(&_tid, nullptr, start_routine, this);
        }

        void join()
        {
            int n = pthread_join(_tid, nullptr);
            assert(n == 0);
            (void)n;
        }

        std::string threadname()
        {
            return _name;
        }
        void *callback()
        {
            return _func(_args);
        }
        ~Thread()
        {
        }

    private:
        std::string _name;
        void *_args;
        func_t _func;
        pthread_t _tid;

        static int threadnum;
    };

    int Thread::threadnum = 1;
}

对于任务队列,可以由多个线程进行访问,我们就需要加锁保护了,把之前写过的锁的小组件引入进来:

LockGuard.hpp:

#include <iostream>
#include <mutex>
class Mutex
{
public:
    Mutex(pthread_mutex_t*lock_p=nullptr)
    :lock_p_(lock_p)
    {}
    void lock()
    {
        if(lock_p_) pthread_mutex_lock(lock_p_);
    }
    void unlock()
    {
        if(lock_p_) pthread_mutex_unlock(lock_p_);
    }
    ~Mutex()
    {}
private:
    pthread_mutex_t * lock_p_;
};
class LockGuard
{
public:
    LockGuard(pthread_mutex_t*mutex)
    :mutex_(mutex)
    {
        mutex_.lock();
    }

    ~LockGuard()
    {
        mutex_.unlock();
    }
private:
    Mutex mutex_;
};

线程池代码如下:创建一批线程时,我们需要实现线程的运行函数static void*handlerTask,之所以是静态的,是因为我们要把这个运行函数传递给Thread类中的func_,不能有this指针,所以是静态成员函数。而没有this指针,我们无法访问ThreadPool里面的成员变量,所以需要封装接口供其调用。

ThreadPool.hpp:

#pragma once
#include "Thread.hpp"
#include "LockGuard.hpp"
#include <vector>
#include <queue>
#include <pthread.h>
#include <mutex>
#include <unistd.h>
using namespace ThreadNs;
const int gnum = 3;
template <class T>
class ThreadPool;

template <class T>
class ThreadData
{
public:
    ThreadPool<T> *threadpool;
    std::string name;
public:
    ThreadData(ThreadPool<T> *tp, const std::string &n) : threadpool(tp), name(n)
    { }
};
template <class T>
class ThreadPool
{
private:
    static void *handlerTask(void *args)
    {
        ThreadData<T> *td = (ThreadData<T> *)args;
        ThreadPool<T> *threadpool = static_cast<ThreadPool<T> *>(args);
        while (true)
        {
            T t;
            {
                LockGuard lockguard(td->threadpool->mutex());
                while(td->threadpool->isQueueEmpty())
                {
                    td->threadpool->threadWait();
                }
                t = td->threadpool->pop(); 
            }
            std::cout << td->name << " 获取了一个任务" << t.toTaskString() << "并处理完成,结果是: " << t() << std::endl;
        }
        delete td;
        return nullptr;
    }
public:
    void lockQueue() { pthread_mutex_lock(&_mutex); }
    void unlockQueue() { pthread_mutex_unlock(&_mutex); }
    bool isQueueEmpty() { return _task_queue.empty(); }
    void threadWait() { pthread_cond_wait(&_cond, &_mutex); }
    T pop()
    {
        T t = _task_queue.front();
        _task_queue.pop();
        return t;
    }
    
    void Push(const T &in)
    {
        LockGuard lockguard(&_mutex);
        _task_queue.push(in);
        pthread_cond_signal(&_cond);
    }

    pthread_mutex_t *mutex()
    {
        return &_mutex;
    }

public:
    ThreadPool(const int &num = gnum) : _num(num)
    {
        pthread_mutex_init(&_mutex, nullptr);
        pthread_cond_init(&_cond, nullptr);
        for (int i = 0; i < _num; i++)
        {
            _threads.push_back(new Thread());
        }
    }

    void run()
    {
        for (const auto &t : _threads)
        {
            ThreadData<T> *td = new ThreadData<T>(this, t->threadname());
            t->start(handlerTask, td);
            std::cout << t->threadname() << "start..." << std::endl;
        }
    }

    ~ThreadPool()
    {
        pthread_mutex_destroy(&_mutex);
        pthread_cond_destroy(&_cond);
        for (const auto &t : _threads)
            delete t;
    }
private:
    int _num;
    std::vector<Thread *> _threads;
    std::queue<T> _task_queue;
    pthread_mutex_t _mutex;
    pthread_cond_t _cond;
};

我们将线程池进行了模板化,因此线程池当中存储的任务类型可以是任意的;现在我们想像之前处理各种数据的计算,那么先引入任务组件:

Task.hpp:

#pragma once
#include <iostream>
#include <functional>
class Task
{
    using func_t = std::function<int(int,int ,char)>;
public:
    Task(){}

    Task(int x,int y,char op,func_t func)
    :_x(x),_y(y),_op(op),_callback(func)
    {}

    std::string operator()()
    {
        int result = _callback(_x,_y,_op);
        char buffer[1024];
        snprintf(buffer,sizeof buffer,"%d %c %d = %d",_x,_op,_y,result);
        return buffer;
    }

    std::string toTaskString()
    {
        char buffer[1024];
        snprintf(buffer,sizeof buffer,"%d %c %d = ?",_x,_op,_y);
        return buffer;
    }
private:
    int _x;
    int _y;
    char _op;
    func_t _callback;
};

const std::string oper = "+-*/%";
int mymath(int x,int y,char op)
{
    int result = 0;
    switch(op)
    {
    case '+':
        result = x+y;
        break;
    case '-':
        result = x-y;
        break;
    case '*':
        result = x*y;
        break;
    case '/':
        if(y==0)
        {
            std::cerr<<"div zero error!"<<std::endl;
            result = -1;
        }
        else
        {
            result = x/y;
        }
        break;
    case '%':
        if(y==0)
        {
            std::cerr<<"mod zero error!"<<std::endl;
            result = -1;
        }
        else
        {
            result = x%y;
        }
        break;
    default:
        break;
    }
    return result;
}

main.cc:

#include "ThreadPool.hpp"
#include "Thread.hpp"
#include "Task.hpp"
#include <unistd.h>
#include <ctime>
int main()
{
   ThreadPool<Task>* tp = new ThreadPool<Task>();
   tp->run();
   srand(time(0));
   int x,y;
   char op;
   while(true)
   {
    x = rand()%10+1;
    y = rand()%20+1;
    op  =oper[rand()%oper.size()];
    Task t(x,y,op,mymath);
    tp->Push(t);
    sleep(1);
   }
    return 0;
}

​🌙 线程池单列模式

分析:

IT行业这么火, 涌入的人很多. 俗话说林子大了啥鸟都有. 大佬和菜鸡们两极分化的越来越严重. 为了让菜鸡们不太拖大佬的后腿, 于是大佬们针对一些经典的常见的场景, 给定了一些对应的解决方案, 这个就是 设计模式.

单例模式的特点:

  • 某些类, 只应该具有一个对象(实例), 就称之为单例.例如一个男人只能有一个媳妇.
  • 在很多服务器开发场景中, 经常需要让服务器加载很多的数据 (上百G) 到内存中. 此时往往要用一个单例的类来管理这些数据.

饿汉实现方式和懒汉实现方式:(我们以洗碗的例子来说明懒汉模式和饿汉模式

  • 吃完饭, 立刻洗碗, 这种就是饿汉方式. 因为下一顿吃的时候可以立刻拿着碗就能吃饭。吃完饭, 先把碗放下, 然后下一顿饭用到这个碗了再洗碗, 就是懒汉方式。
  • 懒汉方式最核心的思想是 “延时加载”. 从而能够优化服务器的启动速度。

饿汉方式实现单例模式:

template <class T>
class Singleton
{
	static T data;
public:
	static T* GetInstance() 
	{
		return &data;
	}
};

只要通过 Singleton 这个包装类来使用 T 对象, 则一个进程中只有一个 T 对象的实例。

懒汉方式实现单例模式:

template <class T>
class Singleton
{
	static T* inst;
public:
	static T* GetInstance()
    {
		if (inst == NULL) {
		inst = new T();
	}
	return inst;
}
};

存在一个严重的问题, 线程不安全。第一次调用 GetInstance 的时候, 如果两个线程同时调用, 可能会创建出两份 T 对象的实例,但是后续再次调用, 就没有问题了。

懒汉方式实现单例模式(线程安全版本):

// 懒汉模式, 线程安全
template <class T>
class Singleton
{
	volatile static T* inst; // 需要设置 volatile 关键字, 否则可能被编译器优化.
	static std::mutex lock;
public:
	static T* GetInstance()
    {
		if (inst == NULL)
        { 
            // 双重判定空指针, 降低锁冲突的概率, 提高性能.
			lock.lock(); // 使用互斥锁, 保证多线程情况下也只调用一次 new.
			if (inst == NULL)
            {
				inst = new T();
			}
			lock.unlock();
		}
		return inst;
	}
};

注意事项:

  1. 加锁解锁的位置。
  2. 双重 if 判定, 避免不必要的锁竞争。
  3. volatile关键字防止过度优化。

​🌙 STL,智能指针和线程安全(拓展)

STL中的容器是否是线程安全的?

  • 不是。原因是, STL 的设计初衷是将性能挖掘到极致, 而一旦涉及到加锁保证线程安全, 会对性能造成巨大的影响。
  • 而且对于不同的容器, 加锁方式的不同, 性能可能也不同(例如hash表的锁表和锁桶).因此 STL 默认不是线程安全. 如果需要在多线程环境下使用, 往往需要调用者自行保证线程安全。

智能指针是否是线程安全的?

  • 对于 unique_ptr, 由于只是在当前代码块范围内生效, 因此不涉及线程安全问题。
  • 对于 shared_ptr, 多个对象需要共用一个引用计数变量, 所以会存在线程安全问题. 但是标准库实现的时候考虑到了这个问题, 基于原子操作(CAS)的方式保证 shared_ptr 能够高效, 原子的操作引用计数。

​🌙 常见的各种锁

悲观锁:

在每次取数据时,总是担心数据会被其他线程修改,所以会在取数据前先加锁(读锁,写锁,行锁等),当其他线程想要访问数据时,被阻塞挂起。

乐观锁:

每次取数据时候,总是乐观的认为数据不会被其他线程修改,因此不上锁。但是在更新数据前,会判断其他数据在更新前有没有对数据进行修改。主要采用两种方式:版本号机制和CAS操作。

CAS操作:

当需要更新数据时,判断当前内存值和之前取得的值是否相等。如果相等则用新值更新。若不等则失败,失败则重试,一般是一个自旋的过程,即不断重试

自旋锁:

使用自旋锁时,当多线程发生竞争锁的情况时,加锁失败的线程会忙等待(这里的忙等待可以用 while 循环等待实现),直到它拿到锁。而互斥锁加锁失败后,线程会让出 CPU 资源给其他线程使用,然后该线程会被阻塞挂起。如果成功申请临界资源的线程,临界区代码执行时间过长,自旋的线程会长时间占用 CPU 资源,所以自旋的时间和临界区代码执行的时间是成正比的关系。如果临界区代码执行的时间很短,就不应该使用互斥锁,而应该选用自旋锁。因为互斥锁加锁失败,是需要发生上下文切换的,如果临界区执行的时间比较短,那可能上下文切换的时间会比临界区代码执行的时间还要长。

​🌙 读者写者问题

读写锁:

在编写多线程的时候,有一种情况是十分常见的。那就是,有些公共数据修改的机会比较少。相比较改写,它们读的机会反而高的多。通常而言,在读的过程中,往往伴随着查找的操作,中间耗时很长。给这种代码段加锁,会极大地降低我们程序的效率。那么有没有一种方法,可以专门处理这种多读少写的情况呢? 有,那就是读写锁。

读写锁接口:

//初始化读写锁
pthread_rwlock_init(pthread_rwlock_t *restrict rwlock, const pthread_rwlockattr_t *restrict attr);


//销毁读写锁
pthread_rwlock_destroy(pthread_rwlock_t *rwlock);


//读加锁
pthread_rwlock_rdlock(pthread_rwlock_t *rwlock);


//写加锁
pthread_rwlock_tryrdlock(pthread_rwlock_t *rwlock);


//解锁
pthread_rwlock_unlock(pthread_rwlock_t *rwlock);

🌟结束语 

       今天内容就到这里啦,时间过得很快,大家沉下心来好好学习,会有一定的收获的,大家多多坚持,嘻嘻,成功路上注定孤独,因为坚持的人不多。那请大家举起自己的小手给博主一键三连,有你们的支持是我最大的动力💞💞💞,回见。

​​​ 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mfbz.cn/a/783888.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数学系C++(六七)

目录 * &指针与地址 void指针 指针可以等于&#xff1a; const 指向常量的指针 const int *px 常指针 int * const px 指向常量的常指针const 类型标识符 * const 指针名 指针加减&#xff1a; 指针恒等式 函数指针【待续】 指针型函数&#xff1a; 指向函数的…

01day C++初入学习

这里写目录标题 1.C区别于C的输入输出2.什么是命名空间3. namespace的定义namespace的使用(1)namespace嵌套使用(2)多⽂件中可以定义同名namespace(3) 4.命名空间的使用5.C输⼊&输出6.缺省参数7.函数重载8.引用8.1引用的特性8.3引用的使用 1.C区别于C的输入输出 #include&…

拉格朗日乘子法

拉格朗日乘子法 flyfish 拉格朗日乘子法是一种用于求解带约束优化问题的强有力工具。它通过引入新的变量&#xff08;拉格朗日乘子&#xff09;&#xff0c;将带约束的优化问题转换为无约束的优化问题&#xff0c;从而简化问题的求解过程。 假设我们有一个优化问题&#xff…

数据结构--二叉树相关例题4

运用到malloc函数&#xff0c;因为之前忘记它的使用方法&#xff0c;因此附加一个 动态内存管理&#xff08;前面内容中有讲解过&#xff09;的知识点 1.二叉树遍历 //二叉树遍历 //属于IO类型题有输入有输出//因为输入包括1行字符串&#xff0c;长度不超过100&#xff0c;所以…

复合机器人:手脚眼脑的完美结合

在现代工业制造的舞台上&#xff0c;复合机器人如同一位精密而高效的工匠&#xff0c;以其独特的手脚眼脑&#xff0c;正深刻改变着传统的生产方式。这些机器人不仅仅是机械臂的简单延伸&#xff0c;它们汇聚了先进的机械结构、智能的感知系统、精密的控制技术和灵活的思维能力…

VBA-计时器的数据进行整理

对计时器的数据进行整理 需求原始数据程序步骤VBA程序结果 需求 需要在txt文件中提取出分和秒分别在两列 原始数据 数据结构 计次7 00:01.855 计次6 00:09.028 计次5 00:08.586 计次4 00:08.865 计次3 00:07.371 计次2 00:06.192 计次1 00:05.949 程序步骤 1、利用Trim()去…

# Redis 入门到精通(一)数据类型(1)

Redis 入门到精通&#xff08;一&#xff09;数据类型&#xff08;1&#xff09; 一 、Redis 入门到精通 基本介绍 1、Redis 基础 ( windows 环境 ) redis 入门数据类型通用命令Jedis 2、Redis 高级 ( linux 环境 ) 持久化redis.conf 配置事务集群 3、Redis 应用 ( linux…

浏览器控制台打印日志的方法汇总

目录 console.table用法 打印数组 打印对象 打印数组对象 打印数组对象里的指定字段 console.count用法 不传参打印 传参打印 console.warn用法 打印文本 打印对象 console.error用法 打印文本 打印对象 console.assert用法 打印文本 打印对象 consol…

HCIA综合实验

学习新思想&#xff0c;争做新青年。今天学习的是HCIA综合实验&#xff01; 实验拓扑 实验需求 总部&#xff1a; 1、除了SW8 SW9是三层交换机&#xff0c;其他交换机均为2层交换机。 2、GW为总部的出口设备&#xff0c;使用单臂路由技术&#xff0c;VLAN10,20,100的网关都在GW…

写一个函数,返回参数二进制中 1 的个数

代码要求 输入一个整数n&#xff0c;输出该数32位二进制中为1的个数&#xff08;包括最高位的符号位&#xff09;&#xff0c;其中负数用补码表示 如&#xff1a;输入&#xff1a;15 &#xff08;15的二进制表示&#xff1a;0000 1111&#xff09; 输出&#xff1a;4 代码实…

生成式人工智能:开发者的得力助手还是职业威胁?

在过去的几年里&#xff0c;生成式人工智能&#xff08;AIGC&#xff09;在软件开发领域引发了广泛关注。AI工具在代码生成、错误检测、自动化测试等方面的应用&#xff0c;正在迅速改变开发者的工作方式。AI究竟是在帮助开发者提高效率&#xff0c;还是在逐渐取代他们&#xf…

开个技术外挂|用技术轻松实现GPU显卡冷却风扇噪声控制

GPU显卡冷却风扇噪声分析 游戏玩家可能有这样的体验&#xff1a;当显卡卖力工作的时候&#xff0c;明显感觉到从机箱传来的噪声变大了。这是因为系统监测到芯片有过热风险&#xff0c;从而自动提升了冷却风扇的转速。 如下图所示&#xff0c;当GPU显卡处于 20C 时&#xff0c;风…

文心一言 VS 讯飞星火 VS chatgpt (298)-- 算法导论22.1 2题

二、给定一棵有 7 个结点的完全二叉树的邻接链表&#xff0c;请给出等价的邻接矩阵表示。这里假设结点的编号为从 1~7 。如果要写代码&#xff0c;请用go语言。 文心一言&#xff1a; 在Go语言中&#xff0c;表示一棵完全二叉树的邻接矩阵首先需要理解完全二叉树的性质&#…

Python 处理Excel 文件, openpyxl 库的使用:

下载&#xff1a; pip install openpyxl 基本使用&#xff1a; 新建一个Excel 工作簿&#xff1a; 使用openpyxl 需要先导入一个Workbook 类&#xff0c; 使用它可以创建一个Workbook<工作簿>对象&#xff0c; 也就是创建一个Excel表文件&#xff0c; web.active 可用来…

数据结构——二叉树之c语言实现堆与堆排序

目录 前言&#xff1a; 1.二叉树的概念及结构 1.1 特殊的二叉树 1.2 二叉树的存储结构 1.顺序存储 2.链式存储 2. 二叉树的顺序结构及实现 2.1 堆的概念 ​编辑 2.2 堆的创建 3.堆的实现 3.1 堆的初始化和销毁 初始化&#xff1a; 销毁&#xff1a; 插入&…

C-10 凸包

凸包 数学定义 平面的一个子集S被称为是凸的&#xff0c;当且仅当对于任意两点A&#xff0c;B属于S&#xff0c;线段PS都完全属于S过于基础就不详细介绍了 凸包的计算 github上找到了别人的代码&#xff0c;用4种方式实现了凸包的计算&#xff0c;把他放在这里链接地址htt…

LibreOffice的国内镜像安装地址和node.js国内快速下载网站

文章目录 1、LibreOffice1.1、LibreOffice在application-conf.yml中的配置2、node.js 1、LibreOffice 国内镜像包网址&#xff1a;https://mirrors.cloud.tencent.com/libreoffice/libreoffice/ 1.1、LibreOffice在application-conf.yml中的配置 jodconverter:local:enable…

平安消保在行动 | 守护每一个舒心笑容 不负每一场双向奔赴

“要时刻记得以消费者为中心&#xff0c;把他们当做自己的朋友&#xff0c;站在他们的角度去思考才能更好地解决问题。” 谈及如何成为一名合格的消费者权益维护工作人员&#xff0c;平安养老险深圳分公司负责咨诉工作的庞宏霄认为&#xff0c;除了要具备扎实的专业技能和沟通…

安全及应用(更新)

一、账号安全 1.1系统帐号清理 #查看/sbin/nologin结尾的文件并统计 [rootrootlocalhost ~]# grep /sbin/nologin$ /etc/passwd |wc -l 40#查看apache登录的shell [rootrootlocalhost ~]# grep apache /etc/passwd apache:x:48:48:Apache:/usr/share/httpd:/sbin/nologin#改变…

const 修饰不同内容区分

1.修饰局部变量 const int a 1;int const a 1; 这两种是一样的 注意&#xff1a; const int b; 该情况下编译器会报错&#xff1a;常量变量"b”需要初始值设定项 将一个变量没有赋初始值直接const修饰后&#xff0c;在以后时无法更改内容的。 2.修饰常量字符串 a.…