动手实操微软开源的GraphRAG

在这里插入图片描述

微软在今年4月份的时候提出了GraphRAG的概念,然后在上周开源了GraphRAG,Github链接见https://github.com/microsoft/graphrag,截止当前,已有6900+Star。

安装教程

官方推荐使用Python3.10-3.12版本,我使用Python3.10版本安装时,在初始化项目过程中会报错,切换到Python3.11版本后运行正常,推测是Python3.10与微软的一些最新的SDK不兼容。所以建议使用Python3.11的环境,安装GraphRAG比较简单,直接下面一行代码即可安装成功。

pip install graphrag

使用教程

在这个教程中,我们使用马伯庸的《太白金星有点烦》这个短篇小说为例,测试下使用微软开源的GraphRAG的处理效果。

注意,GraphRAG是使用LLM来提取文本片段中的实体关系,因此耗费Token数较多,如果是个人调研使用,不建议使用GPT4级别的模型(费用太高,不差钱的大佬请忽略此条建议)。综合成本和效果,我这里使用的是DeepSeek-Chat模型。

初始化项目

我这边先创建了一个临时测试目录myTest,然后按照官方教程,在myTest目录下创建了input目录,并把《太白金星有点烦》这本书的txt版本重命名为book.txt后放到input目录下。然后调用python -m graphrag.index --init 进行初始化工作,生成一些配置文件。

mkdir ./myTest/input
curl https://www.xxx.com/太白金星有点烦.txt > ./myTest/input/book.txt  // 这里是示例代码,大家在测试时根据实际情况放入自己要测试的txt文本即可。
cd ./myTest
python -m graphrag.index --init

执行完成后,会在当前目录(即MyTest)目录下生成几个新的文件夹:output-后续执行生成的中间结果会保存到这个目录中;prompts-处理过程中用到的一些Prompt内容;.env-大模型API配置文件,里面默认就一个GRAPHRAG_API_KEY 用于配置大模型的apiKey;settings.yaml-该文件是整体的配置信息,如果我们使用的非OPENAI的官方模型和官方API,我们需要修改此配置文件来让GraphRAG按照我们指定的配置文件执行。

配置相关文件

先在.env文件中配置大模型API的Key,这个配置是全局生效的。我们在.env文件中配置完成后,不需要在settings.yaml文件中重复配置。settings.yaml中使用的默认模型为gpt-4-turbo-preview ,如果不需要修改模型以及调用的API地址,那现在就已经配置完成了,后续的配置内容可以执行忽略并直接到执行阶段。

我这里使用的是agicto 提供的APIkey(主要是新用户注册可以免费获取到10块钱的调用额度,白嫖还是挺爽的)。我在这里主要就修改了API地址和调用模型的名称,修改完成后的settings文件完整内容如下:

encoding_model: cl100k_base
skip_workflows: []
llm:
  api_key: ${GRAPHRAG_API_KEY}
  type: openai_chat # or azure_openai_chat
  model: deepseek-chat
  model_supports_json: false # recommended if this is available for your model.
  api_base: https://api.agicto.cn/v1
  # max_tokens: 4000
  # request_timeout: 180.0
  # api_version: 2024-02-15-preview
  # organization: <organization_id>
  # deployment_name: <azure_model_deployment_name>
  # tokens_per_minute: 150_000 # set a leaky bucket throttle
  # requests_per_minute: 10_000 # set a leaky bucket throttle
  # max_retries: 10
  # max_retry_wait: 10.0
  # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
  # concurrent_requests: 25 # the number of parallel inflight requests that may be made

parallelization:
  stagger: 0.3
  # num_threads: 50 # the number of threads to use for parallel processing

async_mode: threaded # or asyncio

embeddings:
  ## parallelization: override the global parallelization settings for embeddings
  async_mode: threaded # or asyncio
  llm:
    api_key: ${GRAPHRAG_API_KEY}
    type: openai_embedding # or azure_openai_embedding
    model: text-embedding-3-small
    api_base: https://api.agicto.cn/v1
    # api_base: https://<instance>.openai.azure.com
    # api_version: 2024-02-15-preview
    # organization: <organization_id>
    # deployment_name: <azure_model_deployment_name>
    # tokens_per_minute: 150_000 # set a leaky bucket throttle
    # requests_per_minute: 10_000 # set a leaky bucket throttle
    # max_retries: 10
    # max_retry_wait: 10.0
    # sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
    # concurrent_requests: 25 # the number of parallel inflight requests that may be made
    # batch_size: 16 # the number of documents to send in a single request
    # batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
    # target: required # or optional
  

chunks:
  size: 300
  overlap: 100
  group_by_columns: [id] # by default, we don't allow chunks to cross documents
    
input:
  type: file # or blob
  file_type: text # or csv
  base_dir: "input"
  file_encoding: utf-8
  file_pattern: ".*\\.txt$"

cache:
  type: file # or blob
  base_dir: "cache"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

storage:
  type: file # or blob
  base_dir: "output/${timestamp}/artifacts"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

reporting:
  type: file # or console, blob
  base_dir: "output/${timestamp}/reports"
  # connection_string: <azure_blob_storage_connection_string>
  # container_name: <azure_blob_storage_container_name>

entity_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/entity_extraction.txt"
  entity_types: [organization,person,geo,event]
  max_gleanings: 0

summarize_descriptions:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/summarize_descriptions.txt"
  max_length: 500

claim_extraction:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  # enabled: true
  prompt: "prompts/claim_extraction.txt"
  description: "Any claims or facts that could be relevant to information discovery."
  max_gleanings: 0

community_report:
  ## llm: override the global llm settings for this task
  ## parallelization: override the global parallelization settings for this task
  ## async_mode: override the global async_mode settings for this task
  prompt: "prompts/community_report.txt"
  max_length: 2000
  max_input_length: 8000

cluster_graph:
  max_cluster_size: 10

embed_graph:
  enabled: false # if true, will generate node2vec embeddings for nodes
  # num_walks: 10
  # walk_length: 40
  # window_size: 2
  # iterations: 3
  # random_seed: 597832

umap:
  enabled: false # if true, will generate UMAP embeddings for nodes

snapshots:
  graphml: false
  raw_entities: false
  top_level_nodes: false

local_search:
  # text_unit_prop: 0.5
  # community_prop: 0.1
  # conversation_history_max_turns: 5
  # top_k_mapped_entities: 10
  # top_k_relationships: 10
  # max_tokens: 12000

global_search:
  # max_tokens: 12000
  # data_max_tokens: 12000
  # map_max_tokens: 1000
  # reduce_max_tokens: 2000
  # concurrency: 32

执行并构建图索引

此流程是GraphRAG的核心流程,即构建基于图的知识库用于后续的问答环节,通过以下代码即可触发执行。

python -m graphrag.index

基于微软在论文中提到的实现思路,执行过程GraphRAG主要实现了如下功能:

  1. Source Documents → Text Chunks:将源文档分割成文本块。
  2. Text Chunks → Element Instances:从每个文本块中提取图节点和边的实例。
  3. Element Instances → Element Summaries:为每个图元素生成摘要。
  4. Element Summaries → Graph Communities:使用社区检测算法将图划分为社区。
  5. Graph Communities → Community Summaries:为每个社区生成摘要。
  6. Community Summaries → Community Answers → Global Answer:使用社区摘要生成局部答案,然后汇总这些局部答案以生成全局答案。

整体执行耗时与具体的文本大小有关。我这个例子整体耗时大概20分钟,耗费人民币大约4块钱。执行过程中的输出如下:


🚀 Reading settings from settings.yaml
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and will 
be removed in a future version. Please use 'DataFrame.transpose' instead.
  return bound(*args, **kwds)
🚀 create_base_text_units
                                   id                                              chunk  ...                        document_ids n_tokens
0    5fe95645e8592dc5146ae4e6e2343ad4  \n附:每天更新最新最全的小说:飞马书屋(FEIMASW.COM)\n\n《太白金星有点烦》...  ...  [764c0e80c3fc53191ccd9e87ad9e4803]    
300
1    e91ee08e3684833d1dd3cb26679a8e6a  歪斜斜落在殿旁台阶上。\n李长庚从鹤背上跳下来,猫腰检查了一下。台阶倒没什么事,只是仙鹤的右...  ...  
[764c0e80c3fc53191ccd9e87ad9e4803]      300
2    7eea0da373e721b9f87ad6c7c05565de  同期飞升的神仙早换成了更威风的神兽坐骑,只有李长庚念旧,一直骑着这头老鹤四处奔波。\n李长庚...  ...  
[764c0e80c3fc53191ccd9e87ad9e4803]      300
3    d0fbd3139f977d98891f5aeae2ac9180  形了。\n“您回来啦?” 织女头也没抬,专心看着宝鉴。\n“嗯!回来了。”\n李长庚端起童子...  ...  
[764c0e80c3fc53191ccd9e87ad9e4803]      300
4    ab349a2200a3878ba2a340c71ba1641f  来泡,平白被自己的牛饮糟蹋了。\n李长庚嘬了嘬牙花子,悻悻坐下,把一沓玉简文书从怀里取出来。...  ...  
[764c0e80c3fc53191ccd9e87ad9e4803]      300
..                                ...                                                ...  ...                                 ...      ...
214  7f8d6ded30cb1488837df6102c77cab4  旅游。编辑说,买ps5也不能报哦。我说鹓雏非梧桐不止,非练实不食,非醴泉不饮,会看得上你这点...  ...  
[764c0e80c3fc53191ccd9e87ad9e4803]      300
215  73b2cf432f11036b715a7ced295a6091  《两京十五日》之后,我也是写了个短篇《长安的荔枝》休息,权当运动之后的拉伸。\n最初我并没打...  ...  
[764c0e80c3fc53191ccd9e87ad9e4803]      300
216  1a10c703e1637de884a1fad7f109a50b  头一看,好嘛,居然有十万字。\n也好,尽兴了,疲惫一扫而空,这波不亏。\n有朋友问我,你是不...  ...  
[764c0e80c3fc53191ccd9e87ad9e4803]      300
217  239fe13a155eb285cebc6938559cf0e9  味,也不合心意。\n当然,这种乘兴而写的东西,神在意前,一气呵成,固然写得舒畅,细节不免粗糙...  ...  
[764c0e80c3fc53191ccd9e87ad9e4803]      214
218  b9fb2d6193b2840cdce5a3cf25542ca7                                    凑个整,不然心里难受。\n\n  ...  [764c0e80c3fc53191ccd9e87ad9e4803]       14

[877 rows x 5 columns]
🚀 create_base_extracted_entities
                                        entity_graph
0  <graphml xmlns="http://graphml.graphdrawing.or...
🚀 create_summarized_entities
                                        entity_graph
0  <graphml xmlns="http://graphml.graphdrawing.or...
🚀 create_base_entity_graph
   level                                    clustered_graph
0      0  <graphml xmlns="http://graphml.graphdrawing.or...
1      1  <graphml xmlns="http://graphml.graphdrawing.or...
2      2  <graphml xmlns="http://graphml.graphdrawing.or...
3      3  <graphml xmlns="http://graphml.graphdrawing.or...
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and will 
be removed in a future version. Please use 'DataFrame.transpose' instead.
  return bound(*args, **kwds)
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and will 
be removed in a future version. Please use 'DataFrame.transpose' instead.
  return bound(*args, **kwds)
🚀 create_final_entities
                                   id         name  ...                                      text_unit_ids                              description_embedding
0    b45241d70f0e43fca764df95b2b81f77       "飞马书屋"  ...  [159e9102707eeaef1f9188407e428111, 45e28cf587e...  [0.008881675079464912, 0.012866131030023098, -...
1    4119fd06010c494caa07f439b333f4c5        "马伯庸"  ...                 [5fe95645e8592dc5146ae4e6e2343ad4]  [0.03241756930947304, 0.03757039085030556, -0....
2    d3835bf3dda84ead99deadbeac5d0d7d    "太白金星李长庚"  ...                 [5fe95645e8592dc5146ae4e6e2343ad4]  [0.002768812933936715, 0.020227784290909767, 
-...
3    077d2820ae1845bcbb1803379a3d1eae        "启明殿"  ...  [02c57ca370b4c0316a20148d00723bac, 046ed708031...  [0.01269223727285862, 0.026068691164255142, 0....
4    3671ea0dd4e84c1a9b02c5ab2c8f4bac  "《太白金星有点烦》"  ...  [5fe95645e8592dc5146ae4e6e2343ad4, 7f8d6ded30c...  [0.003794945077970624, 0.016000036150217056, 
-...
..                                ...          ...  ...                                                ...                                                ...
207  7ea0bc1467e84184842de2d5e5bdd78e    "《长安的荔枝》"  ...                 [7f8d6ded30cb1488837df6102c77cab4]  [0.012446477077901363, 0.005391148384660482, 
0...
208  056f23eb710f471393ae5dc417d83fd9      "两京十五日"  ...                 [73b2cf432f11036b715a7ced295a6091]  [0.021373916417360306, -0.0032437569461762905,...
209  e1ae27016d63447a8dfa021370cba0fa      "长安的荔枝"  ...                 [73b2cf432f11036b715a7ced295a6091]  [0.022816641256213188, -0.0042687226086854935,...
210  f8c10f61a8f344cea7bdafa2d8af14b8         "新书"  ...                 [239fe13a155eb285cebc6938559cf0e9]  [0.05925222113728523, 0.02118016593158245, -0....
211  aa7d003f25624e19bc88d3951d4dc943         "读者"  ...                 [239fe13a155eb285cebc6938559cf0e9]  [0.0453583225607872, 0.020338334143161774, -0....

[851 rows x 8 columns]
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and will 
be removed in a future version. Please use 'DataFrame.transpose' instead.
  return bound(*args, **kwds)
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/datashaper/engine/verbs/convert.py:72: FutureWarning: errors='ignore' is deprecated and 
will raise in a future version. Use to_datetime without passing `errors` and catch exceptions explicitly instead
  datetime_column = pd.to_datetime(column, errors="ignore")
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/datashaper/engine/verbs/convert.py:72: UserWarning: Could not infer format, so each 
element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.
  datetime_column = pd.to_datetime(column, errors="ignore")
🚀 create_final_nodes
      level        title            type                                        description  ... graph_embedding                 top_level_node_id  x  y
0         0       "飞马书屋"  "ORGANIZATION"  飞马书屋是一个多功能的在线阅读平台,其域名为FEIMASW.COM。作为一个组织,飞马书屋不...  ...            None  
b45241d70f0e43fca764df95b2b81f77  0  0
1         0        "马伯庸"        "PERSON"                          "马伯庸是一位小说作者,著有《太白金星有点烦》。"  ...            None  
4119fd06010c494caa07f439b333f4c5  0  0
2         0    "太白金星李长庚"        "PERSON"                "太白金星李长庚是小说《太白金星有点烦》中的主要角色,最近感到烦恼。"  ...            None  
d3835bf3dda84ead99deadbeac5d0d7d  0  0
3         0        "启明殿"           "GEO"  启明府是位于仙界的一个重要组织,与三官府、二十八星宿相当,显示了其在仙界中的地位。李长庚在此...  ...            None 
077d2820ae1845bcbb1803379a3d1eae  0  0
4         0  "《太白金星有点烦》"         "EVENT"  《太白金星有点烦》是由马伯庸所著的一部小说,讲述了太白金星李长庚的故事。这部作品是作者创作的...  ...           
None  3671ea0dd4e84c1a9b02c5ab2c8f4bac  0  0
...     ...          ...             ...                                                ...  ...             ...                               ... .. ..
3399      3    "《长安的荔枝》"         "EVENT"                    "作者在完成《两京十五日》后创作的短篇作品,作为休息和拉伸。"  ...            None  
7ea0bc1467e84184842de2d5e5bdd78e  0  0
3400      3      "两京十五日"         "EVENT"            "《两京十五日》是一个文学作品,作者在此之后创作了另一个短篇《长安的荔枝》。"  ...            None  
056f23eb710f471393ae5dc417d83fd9  0  0
3401      3      "长安的荔枝"         "EVENT"          "《长安的荔枝》是作者在创作《两京十五日》后写的一个短篇,作为休息和创作的延续。"  ...            None  
e1ae27016d63447a8dfa021370cba0fa  0  0
3402      3         "新书"         "EVENT"                   "新书发布是一个即将发生的事件,作者希望得到读者的支持和关注。"  ...            None  
f8c10f61a8f344cea7bdafa2d8af14b8  0  0
3403      3         "读者"                                                                     ...            None  aa7d003f25624e19bc88d3951d4dc943  0  0

[3404 rows x 14 columns]
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and will 
be removed in a future version. Please use 'DataFrame.transpose' instead.
  return bound(*args, **kwds)
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and will 
be removed in a future version. Please use 'DataFrame.transpose' instead.
  return bound(*args, **kwds)
🚀 create_final_communities
      id          title  level raw_community                                   relationship_ids                                      text_unit_ids
0      0    Community 0      0             0  [1c97184ce5ea4049be417a3fd125357b, 13a044c4043...  [159e9102707eeaef1f9188407e428111,45e28cf587e6...
1      2    Community 2      0             2  [8d9ded5fc9cf4c4faba8c6c8cd50e2f4, 595a841aa60...  [02c57ca370b4c0316a20148d00723bac,046ed708031c...
2      4    Community 4      0             4  [5a224002ecbc4725abeb5a424aaca6a6, 8826a17bbda...  [d0fbd3139f977d98891f5aeae2ac9180, 27248272776...
3      3    Community 3      0             3  [ea465e5cd92247829f52ff0c8591d1bb, 2dbac25b512...  [003906d4aeb4b30451d6b15477f474cf,00aa40cc8961...
4      6    Community 6      0             6  [40c2425cb1c34c1591f7cb89f9f5e0bf, 7cf59650687...  [0c08b05560ec3763c4eef3215d9de406,1bf7f3f6d2d8...
..   ...            ...    ...           ...                                                ...                                                ...
167  171  Community 171      3           171  [cc08fc303cdc4177ad77e6e7d3d15cfd, 318a9d64ba7...  [0110b1a44d2939f061fabdca3c0c822a,050f809899ba...
168  169  Community 169      3           169  [22dc64e73efe47c1be1be0552c3e935a, 0a983d6c050...  [13318cc421ba835d8ee409100f7e3c43,4c0646412c3c...
169  166  Community 166      3           166  [2edf3e83c1c64da393d5206ce5b352a3, 58ff8f61ba2...  [1a10c703e1637de884a1fad7f109a50b,d25d9589f7d4...
170  168  Community 168      3           168  [6104e6eabe444d6195ec6efc79a2d618, f7bdce302b5...  [06047f1634e84ec122354736d0da0512,2cd2d62cc35c...
171  170  Community 170      3           170  [1268f164ec404b48a520fe672bca0f16, 2456d7a68d0...  [4502bb159a6b1ae4429141760179b1f3,4a14da17885b...

[172 rows x 6 columns]
🚀 join_text_units_to_entity_ids
                        text_unit_ids                                         entity_ids                                id
0    159e9102707eeaef1f9188407e428111  [b45241d70f0e43fca764df95b2b81f77, 19a7f254a5d...  159e9102707eeaef1f9188407e428111
1    45e28cf587e6d50704fd6ed866278782  [b45241d70f0e43fca764df95b2b81f77, 077d2820ae1...  45e28cf587e6d50704fd6ed866278782
2    4b8b97e111eb9dc6d262c5ec7eb60801  [b45241d70f0e43fca764df95b2b81f77, 19a7f254a5d...  4b8b97e111eb9dc6d262c5ec7eb60801
3    5fe95645e8592dc5146ae4e6e2343ad4  [b45241d70f0e43fca764df95b2b81f77, 4119fd06010...  5fe95645e8592dc5146ae4e6e2343ad4
4    6fe888799b2e26cd911859f9c31f85d6  [b45241d70f0e43fca764df95b2b81f77, 19a7f254a5d...  6fe888799b2e26cd911859f9c31f85d6
..                                ...                                                ...                               ...
871  73b2cf432f11036b715a7ced295a6091  [47f6d6573cf34e1096c95e36251dd60c, 056f23eb710...  73b2cf432f11036b715a7ced295a6091
872  da06f0769e85e52a06407bdf7dec4c2c  [3f3a2d7aa1294116814f0b4d89baa23d, bbdd53a15e9...  da06f0769e85e52a06407bdf7dec4c2c
873  239fe13a155eb285cebc6938559cf0e9  [5d398b88ee4242a59c32feb188683ec3, f8c10f61a8f...  239fe13a155eb285cebc6938559cf0e9
874  7837d3a4069066d3a313a050c5401a77  [bbdd53a15e99452a9deff05d1de2d965, d2ed972353a...  7837d3a4069066d3a313a050c5401a77
875  27b95fa0e9192d3c4088bbdd1d820b5c  [9532cf83e9324ea0a46e5ac89bac407d, 8919fa72a9e...  27b95fa0e9192d3c4088bbdd1d820b5c

[876 rows x 3 columns]
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and will 
be removed in a future version. Please use 'DataFrame.transpose' instead.
  return bound(*args, **kwds)
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/numpy/core/fromnumeric.py:59: FutureWarning: 'DataFrame.swapaxes' is deprecated and will 
be removed in a future version. Please use 'DataFrame.transpose' instead.
  return bound(*args, **kwds)
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/datashaper/engine/verbs/convert.py:65: FutureWarning: errors='ignore' is deprecated and 
will raise in a future version. Use to_numeric without passing `errors` and catch exceptions explicitly instead
  column_numeric = cast(pd.Series, pd.to_numeric(column, errors="ignore"))
🚀 create_final_relationships
         source       target  weight                                        description  ... human_readable_id source_degree target_degree  rank
0        "飞马书屋"  "《太白金星有点烦》"     1.0                      "飞马书屋提供《太白金星有点烦》这部小说的最新最全版本。"  ...                 0            
4             4     8
1        "飞马书屋"        "李长庚"     4.0  李长庚是飞马书屋小说中的角色,显示他与这个组织有文学上的联系。李长庚的对话内容被记录在飞马书...  ...                 
1             4           323   327
2        "飞马书屋"       "小说更新"     1.0                             "飞马书屋提供每天最新最全的小说更新服务。"  ...                 2             4          
1     5
3        "飞马书屋"     "最好看的小说"     1.0                          "飞马书屋提供最好看的小说,满足读者的阅读需求。"  ...                 3             4     
1     5
4         "马伯庸"  "《太白金星有点烦》"     1.0                            "马伯庸是《太白金星有点烦》这部小说的作者。"  ...                 4             1     
4     5
...         ...          ...     ...                                                ...  ...               ...           ...           ...   ...
1891       "编辑"        "出版社"     1.0                              "编辑在出版社工作,负责处理作者的稿件。"  ...              1891             3             1
4
1892       "编辑"          "我"     1.0                      "作者与编辑之间存在关于创作内容和休息方式的交流和分歧。"  ...              1892             3        
3     6
1893        "我"    "《长安的荔枝》"     1.0                     "作者在完成《两京十五日》后创作了《长安的荔枝》作为休息。"  ...              1893             3  
2     5
1894  "《两京十五日》"    "《长安的荔枝》"     1.0                "《长安的荔枝》是作者在《两京十五日》之后创作的短篇作品,作为休息。"  ...              1894     
1             2     3
1895       "新书"         "读者"     1.0               "新书发布时,作者希望得到读者的支持和捧场,这是一种期待和互动的关系。"  ...              1895             2
1     3

[1896 rows x 10 columns]
🚀 join_text_units_to_relationship_ids
                                   id                                   relationship_ids
0    5fe95645e8592dc5146ae4e6e2343ad4  [1c97184ce5ea4049be417a3fd125357b, ae0d3104647...
1    45e28cf587e6d50704fd6ed866278782  [13a044c404394c34af1e9b07c48aa985, 8d9ded5fc9c...
2    4b8b97e111eb9dc6d262c5ec7eb60801  [13a044c404394c34af1e9b07c48aa985, a9b900821b8...
3    a55a87d948656692651bffe4d3aa5f82  [13a044c404394c34af1e9b07c48aa985, 8d9ded5fc9c...
4    e080b0c08ed32f44c6adc344b9771781  [13a044c404394c34af1e9b07c48aa985, f8402b10349...
..                                ...                                                ...
871  613f893eee700fad17498654df3182c0  [58126221b0894f01bae564e2608b754d, 69b67d3b170...
872  239fe13a155eb285cebc6938559cf0e9  [fc757d03e1814784a3a213d87ea36e23, 21bd7045ca9...
873  b0c5905978e8e25106a43ca347427229  [9636a7d02e614d00ac8602bd65da987b, 1a315dfbb60...
874  7837d3a4069066d3a313a050c5401a77  [3fa936635320477cbb990905f5db11d6, 616436c3a00...
875  27b95fa0e9192d3c4088bbdd1d820b5c  [c86a30f7f1fe4a01807dd66719394ec3, 392721fc26e...

[876 rows x 2 columns]
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/graphrag/index/graph/extractors/community_reports/prep_community_report_context.py:57: 
SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  invalid_context_df[schemas.CONTEXT_STRING] = _sort_and_trim_context(
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/graphrag/index/graph/extractors/community_reports/utils.py:16: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  df[schemas.CONTEXT_SIZE] = df[schemas.CONTEXT_STRING].apply(lambda x: num_tokens(x))
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/graphrag/index/graph/extractors/community_reports/prep_community_report_context.py:61: 
SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  invalid_context_df[schemas.CONTEXT_EXCEED_FLAG] = 0
🚀 create_final_community_reports
    community                                       full_content  ...                                  full_content_json                                    id
0         164  # 天廷与神话组织\n\n天廷是一个神话中的组织,负责管理仙界事务和财务,与多个神话人物和地...  ...  {\n    "title": "\u5929\u5ef7\u4e0e\u795e\u8bd...  
7d7397c8-e65a-40ca-8f5e-c8ee95ec9bb0
1         166  # 宝象国与八十一难\n\n宝象国是一个地理位置,涉及多个重要事件和人物,包括玄奘、李长庚、...  ...  {\n    "title": "\u5b9d\u8c61\u56fd\u4e0e\u516...  
d9067bdd-b669-4ce7-b2e8-de33e6487bcf
2         168  # 阿傩与黄风怪的复杂关系\n\n该社区围绕阿傩和黄风怪展开,涉及多个角色和组织,如正途弟子...  ...  {\n    "title": "\u963f\u50a9\u4e0e\u9ec4\u98c...  
7288eb84-717e-46aa-8ccf-90432682a374
3         169  # 三星洞与石猴社区\n\n该社区以三星洞为核心组织,涉及多个关键实体如石猴、六耳、冒名顶替...  ...  {\n    "title": "\u4e09\u661f\u6d1e\u4e0e\u77f...  
4db3be55-ad2a-4e7e-a311-29d4743a71be
4         170  # 通臂与三星洞社区\n\n该社区围绕通臂展开,涉及多个关键实体如三星洞都管、孙悟空、六耳等...  ...  {\n    "title": "\u901a\u81c2\u4e0e\u4e09\u661...  
d993b5ec-6ec2-4d66-859d-512ca93bf01c
..        ...                                                ...  ...                                                ...                                   ...
148         3  # 两界山与取经之旅\n\n该社区以两界山和取经之旅为核心,涉及多个关键实体如玄奘、阿傩长老...  ...  {\n    "title": "\u4e24\u754c\u5c71\u4e0e\u53d...  
d78001e2-5247-4bf9-b2af-fd2cbb109bf4
149         4  # 天庭与神话组织社区\n\n该社区以天庭为核心,涉及多个神话组织和人物,如释门、广目天王、...  ...  {\n    "title": "\u5929\u5ead\u4e0e\u795e\u8bd...  
085b720d-4f87-43a4-8a29-4a9da687789e
150         6  # 西王母与天庭关系网络\n\n该社区以西王母为核心,涉及天庭、卷帘大将、李长庚等多个关键实...  ...  {\n    "title": "\u897f\u738b\u6bcd\u4e0e\u592...  
72ae5d47-5b05-43d1-a60a-de2f92557b56
151         8  # 文殊与普贤的佛教神祇社区\n\n该社区以文殊和普贤两位佛教菩萨为核心,围绕他们的活动和互...  ...  {\n    "title": "\u6587\u6b8a\u4e0e\u666e\u8d2...  
cb782e19-0886-4bf9-93b7-bf864adfa2f3
152         9  # 护法渡劫与师徒四人\n\n该社区围绕‘护法渡劫’事件展开,涉及‘师徒四人’、‘菩萨’等关...  ...  {\n    "title": "\u62a4\u6cd5\u6e21\u52ab\u4e0...  
52ddd79d-cfa7-43d1-a070-5598db14461d

[153 rows x 10 columns]
🚀 create_final_text_units
                                   id  ...                                   relationship_ids
0    5fe95645e8592dc5146ae4e6e2343ad4  ...  [1c97184ce5ea4049be417a3fd125357b, ae0d3104647...
1    e91ee08e3684833d1dd3cb26679a8e6a  ...  [26c926c6016d4639b05427f01ba629f5, 8f6872eeb81...
2    7eea0da373e721b9f87ad6c7c05565de  ...  [8d9ded5fc9cf4c4faba8c6c8cd50e2f4, 595a841aa60...
3    d0fbd3139f977d98891f5aeae2ac9180  ...  [ac80a99fda2b488285d29596dd4d1471, 67d6a3481e4...
4    ab349a2200a3878ba2a340c71ba1641f  ...  [904cd052ec194654bb72f4027e43daa3, 7e88fd2e835...
..                                ...  ...                                                ...
872  7f8d6ded30cb1488837df6102c77cab4  ...  [6bb9bed2e39c4e31a81f12479af3d16c, 7dbca0fef7d...
873  73b2cf432f11036b715a7ced295a6091  ...  [2f13e93b77b84d5994605e27c17c3244, 20574c1c47c...
874  1a10c703e1637de884a1fad7f109a50b  ...  [e65667ec99e145fea2055d6b583cb05b, 2edf3e83c1c...
875  239fe13a155eb285cebc6938559cf0e9  ...  [fc757d03e1814784a3a213d87ea36e23, 21bd7045ca9...
876  b9fb2d6193b2840cdce5a3cf25542ca7  ...                                               None

[877 rows x 6 columns]
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/datashaper/engine/verbs/convert.py:72: FutureWarning: errors='ignore' is deprecated and 
will raise in a future version. Use to_datetime without passing `errors` and catch exceptions explicitly instead
  datetime_column = pd.to_datetime(column, errors="ignore")
🚀 create_base_documents
                                 id                                         text_units                                        raw_content     title
0  764c0e80c3fc53191ccd9e87ad9e4803  [5fe95645e8592dc5146ae4e6e2343ad4, e91ee08e368...  
\n附:每天更新最新最全的小说:飞马书屋(FEIMASW.COM)\n\n《太白金星有点烦》...  book.txt
🚀 create_final_documents
                                 id                                      text_unit_ids                                        raw_content     title
0  764c0e80c3fc53191ccd9e87ad9e4803  [5fe95645e8592dc5146ae4e6e2343ad4, e91ee08e368...  
\n附:每天更新最新最全的小说:飞马书屋(FEIMASW.COM)\n\n《太白金星有点烦》...  book.txt
⠋ GraphRAG Indexer 
├── Loading Input (InputFileType.text) - 1 files loaded (0 filtered) ━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━ 100% 0:00:00 0:00:00
├── create_base_text_units
├── create_base_extracted_entities
├── create_summarized_entities
├── create_base_entity_graph
├── create_final_entities
├── create_final_nodes
├── create_final_communities
├── join_text_units_to_entity_ids
├── create_final_relationships
├── join_text_units_to_relationship_ids
├── create_final_community_reports
├── create_final_text_units
├── create_base_documents
└── create_final_documents
🚀 All workflows completed successfully.

基于构建的知识库进行提问

GraphRAG支持两种提问方式,“global search"和"local search”。"global search"指的是那些需要理解整个文本语料库的问题,例如“数据集的主要主题是什么?”这类问题需要一种全局性的理解和摘要,而不是仅从文本的局部区域中检索信息。相反,"local search"在论文中通常指的是文本的局部区域或文本块,这些局部区域是RAG方法检索的单元。

让GraphRAG帮我介绍下这篇文章都讲述了什么内容,执行代码如下:

python -m graphrag.query --root ../myTest --method global "这篇文章主要讲述 了什么内容?"

输出内容为:

INFO: Reading settings from ../myTest/settings.yaml
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/graphrag/query/indexer_adapters.py:71: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  entity_df["community"] = entity_df["community"].fillna(-1)
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/graphrag/query/indexer_adapters.py:72: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  entity_df["community"] = entity_df["community"].astype(int)
creating llm client with {'api_key': 'REDACTED,len=51', 'type': "openai_chat", 'model': 'deepseek-chat', 'max_tokens': 4000, 'request_timeout': 180.0, 'api_base': 'https://api.agicto.cn/v1', 'api_version': None, 'organization': None, 'proxy': None, 'cognitive_services_endpoint': None, 'deployment_name': None, 'model_supports_json': False, 'tokens_per_minute': 0, 'requests_per_minute': 0, 'max_retries': 10, 'max_retry_wait': 10.0, 'sleep_on_rate_limit_recommendation': True, 'concurrent_requests': 25}

SUCCESS: Global Search Response: 这篇文章主要讲述了多个神话社区的故事,每个社区围绕特定的核心人物或事件展开,涉及复杂的互动关系和动态。这些社区包括玉帝与天庭神祇社orts (138, 119, 136, 93, 58, +more)]

此外,文章还涉及了多个社区和事件的复杂关系和动态,涉及不同的实体如悟空、李长庚、观音等,以及他们之间的互动和影响。这些内容涵盖了从宗教到政治的多个层面,展示了每个社区的核心角色和重要事件。[Data: Reports (125, 115, 143, 71, 92, +more)]

文章还详细描述了李长庚与天庭仙界的关系,他在天庭中的核心角色、与观音、孙悟空、玄奘及取经队伍的复杂关系,以及他在天庭中的多项关键职责和影响力。[Data: Reports (82)]

另外,文章还围绕天庭社区的织女和瑶池展开,涉及多个神话人物和事件,包括织女在天庭的角色和影响力、瑶池在天庭社区中的地位、织女与牛郎的家庭关系、织女对玄奘取经的兴趣以及织女与李长庚的工作关系。[Data: Reports (95)]

最后,文章还涉及了文殊与普贤的佛教神祇社区,围绕他们的活动和互动展开,包括取经队伍的选拔、试禅心活动以及与李长庚的复杂互动。[Data: Reports (60)]

同样的问题,我们使用"local search"的方式再问一下,执行代码

python -m graphrag.query --root ../myTest --method local "这篇文章主要讲述了什么内容?"

输出内容为:

INFO: Reading settings from ../myTest/settings.yaml
[2024-07-07T13:58:58Z WARN  lance::dataset] No existing dataset at /home/xinfeng/PycharmProjects/graphrag/myTest/lancedb/description_embedding.lance, it will be created
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/graphrag/query/indexer_adapters.py:71: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  entity_df["community"] = entity_df["community"].fillna(-1)
/home/xinfeng/miniconda3/envs/graphrag-new/lib/python3.11/site-packages/graphrag/query/indexer_adapters.py:72: SettingWithCopyWarning: 
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy
  entity_df["community"] = entity_df["community"].astype(int)
creating llm client with {'api_key': 'REDACTED,len=51', 'type': "openai_chat", 'model': 'deepseek-chat', 'max_tokens': 4000, 'request_timeout': 180.0, 'api_base': 'https://api.agicto.cn/v1', 'api_version': None, 'organization': None, 'proxy': None, 'cognitive_services_endpoint': None, 'deployment_name': None, 'model_supports_json': False, 'tokens_per_minute': 0, 'requests_per_minute': 0, 'max_retries': 10, 'max_retry_wait': 10.0, 'sleep_on_rate_limit_recommendation': True, 'concurrent_requests': 25}
creating embedding llm client with {'api_key': 'REDACTED,len=51', 'type': "openai_embedding", 'model': 'text-embedding-3-small', 'max_tokens': 4000, 'request_timeout': 180.0, 'api_base': 'https://api.agicto.cn/v1', 'api_version': None, 'organization': None, 'proxy': None, 'cognitive_services_endpoint': None, 'deployment_name': None, 'model_supports_json': None, 'tokens_per_minute': 0, 'requests_per_minute': 0, 'max_retries': 10, 'max_retry_wait': 10.0, 'sleep_on_rate_limit_recommendation': True, 'concurrent_requests': 25}

SUCCESS: Local Search Response: 这篇文章主要讲述了李长庚在天庭仙界中的核心角色及其与多个关键人物的复杂关系,以及他在取经任务中的重要作用。以下是详细的概述:

### 李长庚在天庭中的核心角色
李长庚在天庭中担任多项关键职责,包括启明司的主持和护法锦囊设计等。他的行为和决策直接影响天庭的稳定和取经任务的进展。李长庚的复杂角色和多重职责使得他在天庭中的影响力极大,同时也带来了较高的潜在风险。[Data: Entities (5), Relationships (49, 82, 39, 58, 83, 138, 155, 74, 46)]

### 李长庚与观音的复杂关系
李长庚与观音之间的关系复杂且多层次,涉及合作、争论和策略性互动。他们共同经历了多次困难,彼此之间有着默契的默契。李长庚通过无形的影响来应对观音的威胁,而观音对李长庚的安排感到不满。这种复杂的关系对取经任务的进展有着直接的影响。[Data: Relationships (49)]

### 李长庚与孙悟空的密切关系
李长庚与孙悟空之间的关系复杂且密切,涉及指导、关心和策略性互动。孙悟空对李长庚的修行状态和关心的事情表示理解,而李长庚则提醒孙悟空注意因果。两人之间的直接交流和合作对取经任务的进展至关重要。[Data: Relationships (82)]

### 李长庚与玄奘的互动
李长庚与玄奘之间存在着一系列复杂的关系和互动。李长庚正在策划一个与玄奘旅程相关的事件,这表明他对玄奘的经历和成就有着浓厚的兴趣。两人之间的争议和合作对取经任务的进展有着重要影响。[Data: Relationships (39)]

### 李长庚与取经队伍的关系
李长庚与取经队伍的关系复杂且充满关怀。尽管他本人并未直接参与取经队伍的活动,但他的讨论发生在取经队伍活动的背景下。李长庚为取经队伍护法渡劫,显示出他对该组织的忠诚和支持。[Data: Relationships (58)]

这篇文章通过详细描述李长庚在天庭中的角色及其与观音、孙悟空、玄奘和取经队伍的关系,展现了他在天庭和取经任务中的核心地位和重要作用。

对比之下可以看出,"local search"的查询方式确实会透出更多细节信息。


以上就是这篇文章的主要内容,第二篇文章我会找一个典型的文章,对比下GraphRAG和常规RAG在实际场景中的使用效果,第三篇文章会介绍下GraphRAG的主要实现原理(工作日通常会加班,下班较晚,回家后需要陪陪家人,因此更新可能会慢点,预计下周末出第二篇)。如果想看更多的理论细节,推荐阅读https://arxiv.org/pdf/2404.16130。

感谢大家能看到最后,欢迎大家有时间也来我的个人博客看看,更新的内容会更多些。不来也没关系,我觉得有价值的内容也会继续在CSDN上更新。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/782889.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【C++】类和对象(中)--下篇

个人主页~ 类和对象上 类和对象中-上篇 类和对象 五、赋值运算符重载1、运算符重载2、赋值运算符重载3、前置和后置重载 六、const成员七、日期类的实现Date.hDate.cpptest.cpptest1测试结果test2测试结果test3测试结果test4测试结果test5测试结果test6测试结果test7测试结果 八…

如何在Excel中对一个或多个条件求和?

在Excel中&#xff0c;基于一个或多个条件的求和值是我们大多数人的常见任务&#xff0c;SUMIF函数可以帮助我们根据一个条件快速求和&#xff0c;而SUMIFS函数可以帮助我们对多个条件求和。 本文&#xff0c;我将描述如何在Excel中对一个或多个条件求和&#xff1f; 在Excel中…

R语言学习笔记2-RRStudio环境配置(Windows版)

R语言学习笔记2-R&RStudio环境配置&#xff08;Windows版&#xff09; 安装 R安装RStudio修改默认工作目录修改镜像验证镜像源修改文件编码 环境测试 安装 R R下载地址&#xff1a; https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/windows/base/ 点击下载链接并运行安装程…

《网络安全和信息化》是什么级别的期刊?是正规期刊吗?能评职称吗?

​问题解答 问&#xff1a;《网络安全和信息化》是不是核心期刊&#xff1f; 答&#xff1a;不是&#xff0c;是知网收录的正规学术期刊。 问&#xff1a;《网络安全和信息化》级别&#xff1f; 答&#xff1a;国家级。主管单位&#xff1a;工业和信息化部 主办单位&#…

PostgreSQL主从同步

目录 一、主从复制原理 二、配置主数据库 2.1 创建同步账号 2.2 配置同步账号访问控制 2.3 设置同步参数 3.4 重启主数据库 三、配置从数据库 3.1 停止从库 3.2 清空从库数据文件 3.3 拉取主库数据文件 3.4 配置从库同步参数 3.5 启动从库 四、测试主从 4.1在主库…

家用美容仪维修

美容仪行业是一个随着消费者对外貌和健康关注度不断提高而快速发展的行业。以下是对美容仪行业的详细分析&#xff1a; 一、行业概况 美容仪是一种根据人体生理机能进行调节改善身体和面部的机器&#xff0c;具有美白、嫩肤、祛斑、祛皱、脱毛、减肥等多种功能。随着科技的发…

Mac可以玩Steam吗?苹果电脑可以玩的单机游戏有哪些?

Mac可以玩Steam吗 关于Mac是否能够运行Steam这一问题&#xff0c;答案是肯定的。Steam平台已经支持Mac操作系统&#xff0c;玩家可以通过Steam在Mac上购买、下载和游玩各种优秀的游戏作品。不过&#xff0c;需要注意的是&#xff0c;并非所有的Steam游戏都有Mac版&#xff0c;…

JavaScript 中的面向对象编程--->构造函数--->原型对象与原型链,由浅入深详细讲解!

前言&#xff1a;哈喽&#xff0c;大家好&#xff0c;我是前端菜鸟的自我修养&#xff01;今天给大家分享JavaScript 中的面向对象编程--->构造函数--->原型对象与原型链&#xff0c;由浅入深详细讲解&#xff01;并提供具体代码帮助大家深入理解&#xff0c;彻底掌握&am…

去水印小程序源码修复版-前端后端内置接口+第三方接口

去水印小程序源码&#xff0c;前端后端&#xff0c;内置接口第三方接口&#xff0c; 修复数据库账号密码错误问题&#xff0c;内置接口支持替换第三方接口&#xff0c; 文件挺全的&#xff0c;可以添加流量主代码&#xff0c;搭建需要准备一台服务器&#xff0c;备案域名和http…

【Arduino】XIAOFEIYU(TM)实验ESP32使用DS18B20数字温度传感器模块(图文)

DS18B20 虽然具有测温系统简单、测温精度高、连接方便、占用口线少等优点。今天XIAOFEIYU(TM)就来实验一下使用ESP32连接DS18B20数字温度传感器模块。 DS18B20数字温度传感器模块一共有3个针脚&#xff0c;正负极加一个out数据接口。 连接传感器和ESP32组成测试电路&#xff1a…

R包:蛋白质组学质控评估PTXQC包

介绍 PTXQC包是2016年发表在J Proteome Res期刊上的R包&#xff0c;它主要是对MaxQuant输出结果进行提取处理从而获得评估蛋白质质量结果。 安装 从github安装&#xff0c;安装过程会自动构建tutorial。 devtools::install_github("cbielow/PTXQC", build_vignet…

Qt篇——QLabel固定尺寸的情况下让字体大小自适应并自动换行以完整显示

当文字较少时&#xff0c;默认字体大小为16&#xff1b;当文字内容较多时&#xff0c;自动换行并缩小字体。 举例&#xff1a; 字体较少时 字体较多时 思路&#xff1a; 设置自动换行属性 setWordWrap&#xff1b;通过QFontMetrics计算文字字体要多大、显示多少行才不会超过…

利用亚马逊云科技云原生Serverless代码托管服务开发OpenAI ChatGPT-4o应用

今天小李哥继续介绍国际上主流云计算平台亚马逊云科技AWS上的热门生成式AI应用开发架构。上次小李哥分享​了利用谷歌云serverless代码托管服务Cloud Functions构建Gemini Pro API​&#xff0c;这次我将介绍如何利用亚马逊的云原生服务Lambda调用OpenAI的最新模型ChatGPT 4o。…

MySQL之表的约束(上)

目录 空属性(NULL) 实例建表 插入操作 默认值(default) 建表 插入操作 NULL与default的结合 列描述 建表 zerofill 建表 插入操作 主键 建表 插入 主键的增加与去掉 去掉 增加 复合主键 插入的影响 真正约束字段的是数据类型&#xff0c;但是数据类型约束很单一&a…

burpsuite官方靶场之命令注入

1.简单的命令注入 1.1 达成目标 成功执行whoami查看当前用户的名字。 1.2 攻击步骤 观察该靶场的页面&#xff0c;发现这是一个展示其商品信息的页面&#xff0c;点击view details可以展示每个商品的详情。 来到一个商品的详情页&#xff0c;发现画框部分是检查商品库存的功…

合合信息大模型“加速器”重磅上线

大模型技术的发展和应用&#xff0c;预示着更加智能化、个性化未来的到来。如果将大模型比喻为正在疾驰的科技列车&#xff0c;语料便是珍贵的“燃料”。本次世界人工智能大会期间&#xff0c;合合信息为大模型打造的“加速器”解决方案备受关注。 在大模型训练的上游阶段&…

CSS 后代选择器正确写法 爸爸儿子之间有代沟

CSS 后代选择器正确写法 爸爸儿子之间有代沟 example&#xff1a; > <body> > <div class"outer"> > <span class"inner"></span> > </div> > </body> > <head> > <style>…

如何在浏览器控制台Console中引入外部 JS

想要在某个网页执行一些脚本&#xff0c;却发现某个工具类&#xff0c;如 ajax 请求的 axios 该网页没有引入&#xff0c;或者引入了但控制台却访问不到&#xff0c;这时要怎么办呢&#xff1f; 只需要控制台执行如下代码就好了 var script document.createElement(script);…

Postman使用指南①网页版使用

postman官网地址&#xff1a;Postman API Platform 进入后点击右上角免费注册&#xff0c;注册后登录 登录之后即可在网页使用&#xff0c;无需下载

C语言学习笔记[22]:分支语句switch

switch语句 switch语句也是一种分支语句&#xff0c;常用于多分支的情况 switch语句的语法形式是&#xff1a; switch(整型表达式) {语句项; }而语句项是什么呢&#xff1f; case 整型常量表达式:语句; switch语句中的break 对于case 语句来说&#xff0c;我们day输入的多…