论文略读:Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?

202406 arxiv

1 intro

  • 传统上,复杂的AI任务需要多个专门系统协作完成。
    • 这类系统通常需要独立的模块来进行信息检索、问答和数据库查询等任务
  • 大模型时代,尤其是上下文语言模型(LCLM)时代,上述问题可以“一体化”完成
    • LCLM可以直接接收包含文本、图像、音频等多模态信息的整个语料库作为输入。
    • 通过"语料库中的上下文"(CiC)提示方法,模型能够在统一的框架内执行各种任务,包括检索、推理和答案生成
    • ——>大大简化了流程
    • ——>避免了多个独立系统可能带来的错误累积问题

  • 然而,评估这些模型的性能并不容易。现有的方法往往局限于特定任务,难以全面测试长上下文模型的能力
    • ——>论文提出了LOFT(Long-Context Frontiers)基准测试
      • 包含6种任务类型,涵盖35个数据集,横跨文本、视觉和音频多个模态
        • 文本检索:从大量文档中找出相关内容

        • 视觉检索:根据文本描述找出相关图像或视频

        • 音频检索:匹配文本与相应音频

        • RAG:基于检索信息生成答案

        • SQL:理解自然语言查询并从数据库中提取信息

        • 多示例上下文学习:从大量示例中学习并完成任务

      • LOFT的一个关键特性是其可扩展性

        • 支持从32k到128k,再到1M个标记的上下文长度

        • ——>能够系统地评估模型性能随上下文长度增加的变化

2 Corpus-in-Context prompt

  • 为了充分发挥长上下文模型的潜力,研究团队提出了"上下文中的语料库"(Corpus-in-Context,CiC)提示方法
    • 这种方法允许模型直接在给定的大规模语料库中进行检索和推理

3 实验结果

3.1 评估的模型

  • 评估了三个最先进的长上下文模型:
    • Google的Gemini 1.5 Pro
    • OpenAI的GPT-4o
    • Anthropic的Claude 3 Opus

3.2文本检索任务

  • 在文本检索任务中,Gemini 1.5 Pro的表现尤为出色。
  • 在128k上下文长度的测试中,Gemini 1.5 Pro在多个数据集上达到了与专门训练的检索系统Gecko相当的性能。
    • 例如,在NQ数据集上,Gemini 1.5 Pro和Gecko都达到了0.99的Recall@1分数,而Gemini 1.5 Pro并没有经过专门的检索训练。

  • 然而,随着上下文长度增加到1M标记,模型性能出现了一定程度的下降。这表明在处理超长上下文时,模型仍面临着挑战。

3.3 视觉检索 &音频检索

  • 在视觉检索任务中,Gemini 1.5 Pro同样表现出优异的性能表现。
    • 其在多个数据集上超越了专门的视觉-文本检索模型CLIP。
    • 例如,在OVEN数据集上,Gemini 1.5 Pro达到了0.93的分数,而CLIP只有0.79。
  • 在音频检索任务上,Gemini 1.5 Pro在所有五种语言的FLEURS数据集上都达到了完美或接近完美的表现,超过了专门的音频检索模型。

3.4 RAG

  • 在RAG任务中,长上下文模型展现出了强大的推理能力。
    • 在需要多跳推理的数据集(如HotpotQA和MusiQue)上,Gemini 1.5 Pro的表现超过了传统的RAG pipeline。
    • 例如,在HotpotQA上,Gemini 1.5 Pro得分为0.75,而专业的RAG系统得分为0.70。

3.5 SQL任务

  • 在SQL类任务中,长上下文模型的表现相对较弱。
  • 在Spider和SparC数据集上,专门的SQL系统的性能显著优于长上下文模型。
    • 这表明在处理需要复杂结构化推理的任务时,这些模型还有很大的改进空间。

3.6多示例上下文学习

  • 在多示例上下文学习任务中,长上下文模型展现出了良好的表现。
    • 在某些任务中(如LIB-dialog),模型的性能随着示例数量的增加而稳步提升。 
    • 然而,在一些推理密集型任务中(如BBH-tracking7),增加示例数量并未带来显著改善,这表明模型在复杂推理任务上仍有局限性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/782280.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

Qt/C++音视频开发78-获取本地摄像头支持的分辨率/帧率/格式等信息/mjpeg/yuyv/h264

一、前言 上一篇文章讲到用ffmpeg命令方式执行打印到日志输出,可以拿到本地摄像头设备信息,顺藤摸瓜,发现可以通过执行 ffmpeg -f dshow -list_options true -i video“Webcam” 命令获取指定摄像头设备的分辨率帧率格式等信息,会…

Python 全栈系列258 线程并发与协程并发

说明 最近在大模型调用上,为了尽快的进行大量的数据处理,需要采用并发进行处理。 Before: 以前主要是自己利用CPU和GPU来搭建数据处理程序或者服务,资源受限于所用的硬件,并不那么考虑并发问题。在处理程序中,并发主要…

互联网十万个为什么之什么是数据备份?

数据备份是按照一定的备份频率创建数据副本的过程,将重要的数据复制到其它位置或者存储介质,并对生成的副本保留一定的时长。备份通常储存在不同的物理介质或云端,以确保数据的连续性和完整性。有效的备份策略至关重要,以防止数据…

ESP32-C3-Arduino-uart

引脚图 2实现串口发送接收 1默认值初始化串口(默认是uart0) Serial.begin(UART_BAUD); 参数是波特率 2自定义其他串口 2-1创建实例 HardwareSerial SerialUART(0); //数值指的是uart0 1为uart1.。。。。 2-2初始化 SerialUART.begin(UART_BAU…

LabVIEW的Actor Framework (AF) 结构介绍

LabVIEW的Actor Framework (AF) 是一种高级架构,用于开发并发、可扩展和模块化的应用程序。通过面向对象编程(OOP)和消息传递机制,AF结构实现了高效的任务管理和数据处理。其主要特点包括并发执行、动态可扩展性和强大的错误处理能…

不是哥们?你怎么抖成这样了?求你进来学学防抖吧!全方位深入剖析防抖的奥秘

前言 古有猴哥三打白骨精,白骨精 > 噶 今有用户疯狂点请求,服务器 > 噶 所以这防抖咱必须得学会!!! 本文就来讲解一下Web前端中防抖的奥秘吧!!!! 为什么要做防…

适用于 Windows 11/10/8/7/Vista/XP 的最佳免费分区软件

无论您使用的是 SSD、机械磁盘还是任何类型的 RAID 阵列,硬盘驱动器都是 Windows 计算机中不可或缺的组件。在将文件保存到全新磁盘之前,您应该初始化它,创建分区并使用文件系统格式化。在运行计算机一段时间后,您需要收缩、扩展、…

14-25 剑和侠客 – 预训练模型三部曲2 – 视觉

概述 在第 1 部分中,我们讨论了适用于文本的预训练模型的重要性及其在当今世界的相关性。大型语言模型 (LLM),尤其是 GPT-3 和随后的 GPT-3.5,已经获得了极大的欢迎,从而在 AI 讨论中引起了越来越多的关注。我们已经看到了用于构…

everything高级搜索-cnblog

everything高级搜索用法 基础4选项验证 总结搜索方式 高级搜索搜指定路径文件名: 文件名 路径不含文件名: !文件名包含单词 路径包含指定内容: 路径 content:内容 大小写 区分大小写搜索搜指定路径文件名: case:文件名 路径全字匹配 全字搜指定路径文件名: wholewo…

网络安全基础-2

知识点 1.网站搭建前置知识 域名,子域名,DNS,HTTP/HTTPS,证书等 注册购买域名:阿里云企航_万网域名_商标注册_资质备案_软件著作权_网站建设-阿里云 2.web应用环境架构类 理解不同WEB应用组成角色功能架构: 开发语…

四、(1)网络爬虫入门及准备工作(爬虫及数据可视化)

四、(1)网络爬虫入门及准备工作(爬虫及数据可视化) 1,网络爬虫入门1.1 百度指数1.2 天眼查1.3 爬虫原理1.4 搜索引擎原理 2,准备工作2.1 分析爬取页面2.2 爬虫拿到的不仅是网页还是网页的源代码2.3 爬虫就是…

Golang | Leetcode Golang题解之第213题打家劫舍II

题目: 题解: func _rob(nums []int) int {first, second : nums[0], max(nums[0], nums[1])for _, v : range nums[2:] {first, second second, max(firstv, second)}return second }func rob(nums []int) int {n : len(nums)if n 1 {return nums[0]}…

7.pwn 工具安装和使用

关闭保护的方法 pie: -no-pie Canary:-fno-stack-protector aslr:查看:cat /proc/sys/kernel/randomize_va_space 2表示打开 关闭:echo 0>/proc/sys/kernel/randomize_va_space NX:-z execstack gdb使用以及插件安装 是GNU软件系统中的标准调试工具,此外GD…

【计组OS】I/O方式笔记总结

苏泽 “弃工从研”的路上很孤独,于是我记下了些许笔记相伴,希望能够帮助到大家 目录 IO方式:程序查询方式 工作原理 程序查询方式的详细流程: 1. 初始化阶段 2. 发送I/O命令 3. 循环检查状态 4. 数据传输 5. 继续查询 6…

reactor和proactor模型

Reactor模型是非阻塞的同步IO模型。在主线程中也就是IO处理单元中,只负责监听文件描述符上是否有事件发生,有的话就立即将事件通知工作线程,将socket可读可写事件放入请求队列,交给工作线程处理。 总而言之就是主线程监听有事件发…

期末考试结束,老师该如何私发成绩?

随着期末考试的落幕,校园里又恢复了往日的宁静。然而,对于老师们来说,这并不意味着工作的结束,相反,一系列繁琐的任务才刚刚开始。 成绩单的发放,就是其中一项让人头疼的工作。家长们焦急地等待着孩子的考试…

可视化作品集(08):能源电力领域

能源电力领域的可视化大屏,有着巨大的用武之地,不要小看它。 监控能源生产和消耗情况: 通过可视化大屏,可以实时监控能源生产和消耗情况,包括发电量、能源供应情况、能源消耗情况等,帮助管理者及时了解能…

14-39 剑和诗人13 - 顶级大模型测试分析和建议

​​​​​ 随着对高级语言功能的需求不断飙升,市场上涌现出大量语言模型,每种模型都拥有独特的优势和功能。然而,驾驭这个错综复杂的生态系统可能是一项艰巨的任务,开发人员和研究人员经常面临选择最适合其特定需求的模型的挑战。…

React中的useMemo和memo

引言 React是一个声明式的JavaScript库,用于构建用户界面。在开发过程中,性能优化是一个重要的方面。useMemo和memo是React提供的工具,用于帮助开发者避免不必要的渲染和计算,从而提升应用性能。 问题背景 在React应用中&#…

Golang | Leetcode Golang题解之第214题最短回文串

题目&#xff1a; 题解&#xff1a; func shortestPalindrome(s string) string {n : len(s)fail : make([]int, n)for i : 0; i < n; i {fail[i] -1}for i : 1; i < n; i {j : fail[i - 1]for j ! -1 && s[j 1] ! s[i] {j fail[j]}if s[j 1] s[i] {fail[i…