探索人工智能在电子商务平台与游戏发行商竞争中几种应用方式

过去 12 年来,电脑和视频游戏的发行策略发生了巨大变化。数字游戏的销量首次超过实体游戏的销量 在20132020 年的封锁进一步加速了这一趋势。例如,在意大利,封锁的第一周导致数字游戏下载量 暴涨174.9%.

展望未来,市场有望继续增长,Statista 突出 从现在到 5.76 年,其复合年增长率将达到 2027%,最终到 25.4 年底达到 XNUMX 亿美元的市场规模。

尽管如此,竞争仍然非常激烈。数字游戏市场仅由少数几个平台主导,而且 94% 的支出以数字方式进行,这给新进入者留下的空间非常小。PC 领域的 Steam 和 Epic Games Store 等老牌玩家利用这一点,向发行商收取高额费用。

对于这些大型实体而言,将人工智能融入其运营是自然而然的事情。然而,对于规模较小的新兴平台而言,人工智能可能会改变游戏规则——让它们能够挑战现有的寡头垄断地位。

虽然复制成功的人工智能实施需要仔细考虑特定于平台的特征和操作环境,但人工智能可以通过以下四种方式帮助新兴电子商务公司与数字分销巨头竞争。

1. 增强欺诈检测能力

与其他电子商务垂直行业相比,游戏平台上的欺诈行为规模更大,而且更频繁。由于人工智能算法能够处理和分析大量交易数据,因此可以迅速识别可疑模式或异常。

通过搜索广泛的交易数据库,机器学习算法可以适应和识别欺诈操作,从不常见的用户行为到不规则的支付方案以及来自非典型地理区域的购买。

在传统的基于规则的系统中,其中一些指标可能会被忽视,从而妨碍公司检测欺诈的能力并使其面临潜在的财务损失。

在我们公司,通过实施由第三方开发的人工智能软件,我们阻止了大约 95% 的欺诈交易。我们还与技术携手合作。一旦操作被标记为可疑,我们的经理就会亲自审查。在我们的经理手动批准购买之前,不会向买家发布数字游戏密钥。

2:简化客户支持查询

在电子商务中,人工智能聊天机器人是人工智能最常见的应用之一。

由于市场上已经有很多解决方案,聊天机器人相对容易实施,即使没有历史数据。由于聊天机器人可以从用户互动中学习,因此几乎可以立即产生结果,并帮助公司减少对客户支持人员的需求。

此外,他们还为现有的客户支持代理节省了时间。

根据我们的经验,收到的大多数查询(约 70%)都非常简单且重复。示例包括:

  • 该游戏可以购买吗?
  • 我什么时候可以收到游戏密钥?
  • 如何激活我的许可证密钥?
  • 我的订单状态如何?

在 80% 的案例中,我们的 AI 机器人非常成功地帮助了我们的用户,而无需将他们转交给现场操作员。因此,我们可以说我们的机器人覆盖了大约 56% 的传入支持请求,从而释放了之前投入到支持人员的宝贵资源,以便我们可以将它们用于公司其他地方,以促进我们的增长。

3 识别用户体验转化驱动模式

电子商务导向的企业主面临的一个常见困境是确定哪些因素能够成功推动转化,哪些因素不能。

这是人工智能可以提供帮助的另一个领域,它通过收集用户数据来精确定位导致或阻碍转化的重复行为模式。基于这些数据,公司可以对其网站进行以用户体验为中心的调整。

此外,AI 还可以创建客户细分,从而提高营销工作的效率。由于它可以跨多个维度创建用户资料,因此 AI 可以发现通过人工审核可能不明显的联系和相似的细分群体。例如,购买 GTA 5 的客户可能也会对不同类型的游戏感兴趣,而这些游戏原则上与 GTA 5 无关。

为了实现这一目标,我们实施了 Retail Rocket 的第三方 AI 个性化解决方案。通过利用历史客户购买数据,该工具可帮助我们完成多项任务,例如在网站上和通过电子邮件提供个性化产品推荐,以及识别产品之间的关系,使我们能够建议互补购买。

此外,我们还可以确定客户下一次潜在购买的时间。这也改善了我们营销信息的时机。总而言之,我们可以自豪地说,这些努力使我们通过营销渠道的销售额增长了约 15%。

4、预测销售额

鉴于游戏行业的时间敏感性 - 例如,Steam 对发布商可以生成的密钥数量施加了限制 - 有效的预测是关键。

在这里,我们实现了一个基于两种主要方法的简单 AI 模型:时间序列预测和回归分析。

通过检测模式,前者帮助我们预测未来的销售数据并适应季节性,这是游戏领域的一个重要因素。另一方面,后者帮助我们的团队建立销售数据与其他变量之间的关系——人口统计、定价、产品类别等。

由于这些参数存在很大差异——例如,有些体育游戏每年都会发布,比如 EA Sports 的游戏,而其他策略游戏则跨越几十年——正确掌握这些关键因素对于准确预测至关重要。

我们从 2024 年春季开始实施这一计划,因此,到目前为止,我们的结果与没有使用 AI 时的结果相似。但是,我们预计,随着我们进一步校准和完善模型,并积累更多历史数据,我们的准确性将随着时间的推移显著提高。

最后的思考

在游戏等某些领域,人工智能可以成为一种民主化因素——使新兴的、高潜力的平台能够与老牌巨头竞争。

话虽如此,要充分发挥其潜力,并不只是简单地为了整合人工智能而整合它,而是要正确地去做。

对于无法负担内部 AI 专家团队的小型企业来说,一个可行的解决方案是利用现有的第三方软件。即使不是 AI 专家,普通开发人员也可以使用其中一些现成的解决方案。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/781952.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【若依前后端分离】通过输入用户编号自动带出部门名称(部门树)

一、部门树 使用 <treeselect v-model"form.deptId" :options"deptOptions" :show-count"true" placeholder"请选择归属部门"/> <el-col :span"12"><el-form-item label"归属部门" prop"dept…

QT5.14.2与Mysql8.0.16配置笔记

1、前言 我的QT版本为 qt-opensource-windows-x86-5.14.2。这是QT官方能提供的自带安装包的最近版本&#xff0c;更新的版本需要自己编译源代码&#xff0c;可点击此链接进行下载&#xff1a;Index of /archive/qt/5.14/5.14.2&#xff0c;选择下载 qt-opensource-windows-x86…

【机器学习】基于线性回归的医疗费用预测模型

文章目录 一、线性回归定义和工作原理假设表示 二、导入库和数据集矩阵表示可视化 三、成本函数向量的内积 四、正态方程五、探索性数据分析描述性统计检查缺失值数据分布图相关性热图保险费用分布保险费用与性别和吸烟情况的关系保险费用与子女数量的关系保险费用与地区和性别…

Halcon 铣刀刀口破损缺陷检测

一 OTSU OTSU&#xff0c;是一种自适应阈值确定的方法,又叫大津法&#xff0c;简称OTSU&#xff0c;是一种基于全局的二值化算法,它是根据图像的灰度特性,将图像分为前景和背景两个部分。当取最佳阈值时&#xff0c;两部分之间的差别应该是最大的&#xff0c;在OTSU算法中所采…

张量分解(2)——张量运算(内积、外积、直积、范数)

&#x1f345; 写在前面 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;这里是hyk写算法了吗&#xff0c;一枚致力于学习算法和人工智能领域的小菜鸟。 &#x1f50e;个人主页&#xff1a;主页链接&#xff08;欢迎各位大佬光临指导&#xff09; ⭐️近…

Stream流真的很好,但答应我别用toMap()

你可能会想&#xff0c;toList 和 toSet 都这么便捷顺手了&#xff0c;当又怎么能少得了 toMap() 呢。 答应我&#xff0c;一定打消你的这个想法&#xff0c;否则这将成为你噩梦的开端。 让我们先准备一个用户实体类。 Data AllArgsConstructor public class User { priv…

【C#】函数方法、属性分文件编写

1.思想 分文件编写是面向对象编程的重要思想&#xff0c;没有实际项目作为支撑很难理解该思想的精髓&#xff0c;换言之&#xff0c;一两个函数代码量因为太少无法体现分文件编写减少大量重复代码的优势。 2.项目结构介绍 整项目的名称叫AutoMetadata&#xff0c;是一个基于W…

【第三版 系统集成项目管理工程师】第4章 信息系统架构

持续更新。。。。。。。。。。。。。。。 【第三版】系统集成项目管理工程师 考情分析4.1架构基础4.1.1指导思想&#xff08;非重点&#xff09; P1364.1.2设计原则&#xff08;非重点&#xff09; P1364.1.3建设目标&#xff08;非重点&#xff09; P1374.1.4总体框架 P138练习…

【web前端HTML+CSS+JS】--- CSS学习笔记02

一、CSS&#xff08;层叠样式表&#xff09;介绍 1.优势 2.定义解释 如果有多个选择器共同作用的话&#xff0c;只有优先级最高那层样式决定最终的效果 二、无语义化标签 div和span&#xff1a;只起到描述的作用&#xff0c;不带任何样式 三、标签选择器 1.标签/元素选择器…

什么牌子的头戴式蓝牙耳机好性价比高?

说起性价比高的头戴式蓝牙耳机,就不得不提倍思H1s,作为倍思最新推出的新款,在各项功能上都实现了不错的升级,二字开头的价格,配置却毫不含糊, 倍思H1s的音质表现堪称一流。它采用了40mm天然生物纤维振膜,这种振膜柔韧而有弹性,能够显著提升低音的量感。无论是深沉的低音还是清…

Android 10年,35岁,该往哪个方向发力

网上看到个网友发的帖子&#xff0c;觉的这个可能是很多开发人员都会面临和需要思考的问题。 不管怎样&#xff0c; 要对生活保持乐观&#xff0c;生活还是有很多的选择和出路的。 &#xff08;内容来自网络&#xff0c;不代表个人观点&#xff09; 《Android Camera开发入门》…

机器人动力学模型及其线性化阻抗控制模型

机器人动力学模型 机器人动力学模型描述了机器人的运动与所受力和力矩之间的关系。这个模型考虑了机器人的质量、惯性、关节摩擦、重力等多种因素&#xff0c;用于预测和解释机器人在给定输入下的动态行为。动力学模型是设计机器人控制器的基础&#xff0c;它可以帮助我们理解…

element-plus的文件上传组件el-upload

el-upload组件 支持多种风格&#xff0c;如文件列表&#xff0c;图片&#xff0c;图片卡片&#xff0c;支持多种事件&#xff0c;预览&#xff0c;删除&#xff0c;上传成功&#xff0c;上传中等钩子。 file-list&#xff1a;上传的文件集合&#xff0c;一定要用v-model:file-…

基于B/S模式和Java技术的生鲜交易系统

你好呀&#xff0c;我是计算机学姐码农小野&#xff01;如果有相关需求&#xff0c;可以私信联系我。 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;B/S模式、Java技术 工具&#xff1a;Visual Studio、MySQL数据库开发工具 系统展示 首页 用户注册…

RAG综述汇总

第一篇&#xff1a;Retrieval-Augmented Generation for Large Language Models: A Survey(同济/复旦) 论文链接 1.简介 这篇全面的综述论文详细研究了 RAG 范式的发展&#xff0c;包括 Naive RAG、Advanced RAG 和 Modular RAG。介绍了 RAG 框架的三个基础技术&#xff0c;…

Python28-7.4 独立成分分析ICA分离混合音频

独立成分分析&#xff08;Independent Component Analysis&#xff0c;ICA&#xff09;是一种统计与计算技术&#xff0c;主要用于信号分离&#xff0c;即从多种混合信号中提取出独立的信号源。ICA在处理盲源分离&#xff08;Blind Source Separation&#xff0c;BSS&#xff0…

CANopen协议开发梳理总结笔记教程

0、提醒 CANOpen使用时&#xff0c;需要清楚什么是大端和小端&#xff0c;这对于CANOpen数据发送及解析时&#xff0c;有很大的帮助。且学习开发CANOpen时&#xff0c;需要具备一定的CAN基础。 1、CANOpen协议介绍 ①、什么是CANOpen协议 CANOpen协议是一种架构在控制局域网络…

yaml格式转换成json格式

yaml格式转换成json格式 ①postman生成的结果是yaml格式 ps&#xff1a;postman输出的格式是没有自动换行的&#xff0c;需要将内容换行 ②复制到Python的脚本跑一趟&#xff1a;自动换行并去掉/n&#xff1b; str " "//(postman输出的内容&#xff09; print(st…

【python技巧】parser传入参数

参考网址: https://lightning.ai/docs/pytorch/LTS/api/pytorch_lightning.utilities.argparse.html#pytorch_lightning.utilities.argparse.add_argparse_args 1. 简单传入参数. parse_known_args()方法的作用就是把不在预设属性里的参数也返回,比如下面这个例子, 执行pytho…

2024年信息系统项目管理师1批次上午客观题参考答案及解析(1)

1、新型基础设施建设是以新发展理念为引领&#xff0c;以()为驱动&#xff0c;以信息网络为基础&#xff0c;面向高质量发展需要&#xff0c;提供数字转型、智能升级、融合创新等服务的基础设施体系。 A&#xff0e;技术创新 B&#xff0e;人工智能 C&#xff0e;区块链 D&…