OpenEarthMap:全球高分辨率土地覆盖制图的基准数据集(开源来下载!!!)

OpenEarthMap由220万段5000张航拍和卫星图像组成,覆盖6大洲44个国家97个地区,在0.25-0.5m的地面采样距离上人工标注8类土地覆盖标签。我们提供8类标注:裸地、牧场、已开发空间、道路、树木、水、农业用地和建筑。类选择与现有的具有亚米GSD的产品和基准数据集(如LoveDA[49]和DeepGlobe[12])一致。该数据集可在https: //open-earth-map.org上获得。

图像来源

我们的策略是尽可能多地重用现有基准数据集的图像,并手动标注新的土地覆盖标签。我们选择了xBD[16]、Inria[30]、Open Cities AI[33]、SpaceNet[47]、Landcover。ai[3]、AIRS[8]、GeoNRW[1]、HTCD[38]等数据集,基于源图像可再分发、地面采样距离(GSD)等于或小于0.5m、图像具有地理坐标信息的条件。如果有足够多的区域图像,我们以省或城市的尺度定义该区域,我们以1024×1024像素的大小采样该区域的50-70张图像。我们采用的每个数据集中的图像数量是根据拍摄图像的大陆和国家的多样性和平衡来确定的。对于现有数据集未覆盖的国家和地区,收集了这些国家或地区公开的航空图像,以减轻区域差距,这是大多数现有基准数据集存在的问题。开放数据下载自OpenAerialMap[34]和地理空间机构[15,32]。有关归属的更多细节,请参阅附录。

除了这种地理多样性之外,我们的数据集还包括从不同平台(包括卫星、飞机和无人机)拍摄的混合图像。对于GSD小于0.25m的高分辨率图像,我们将图像重新采样到0.3m或0.5m,以考虑捕获区域的物体大小和视觉可解释性。基本上,每个区域的图像都是通过随机抽样和人工检查相结合的方式选择的。此外,如果源基准数据集中特定区域的图像数量非常大,我们使用顺序标记的数据(例如,每10张图像)和另一个回归模型训练分割模型来估计损失。然后,我们添加具有高预测损失值的图像,因为用可用标签训练的模型更难分割它们。

其他数据集介绍

OpenSentinelMap[20]的特点是利用Sentinel-2和OpenStreetMap的开放数据对全球进行全面覆盖,而DynamicEarthNet[44]则在高时间分辨率方面具有优势。OpenEarthMap在提供亚米级别的空间详细注释方面更进一步。与LoveDA[49]和DeepGlobe[12]进行了更详细的比较,它们的分辨率和类定义与OpenEarthMap相似。图4a显示了三个数据集的类比例的比较。需要注意的是,LoveDA不包括牧场,而在DeepGlobe的土地覆盖分类数据集中,建筑物和道路被包括在城市类别中。在OpenEarthMap中不存在主导职业,职业比例相对平衡。单幅图像中段数的归一化直方图如图4b所示。在图像大小方面,LoveDA与OpenEarthMap相同(1024×1024像素),而DeepGlobe更大(2448×2448像素)。OpenEarthMap的直方图有一个非常长的尾巴,在OpenEarthMap的每个图像中显示的片段数量比其他数据集大得多。OpeneEarthMap的空间细节标注体现在第5节和第6节中介绍的跨数据集评估和训练模型的样本外预测结果中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/781856.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

C#知识|项目的实施过程及通用三级架构的搭建笔记

哈喽,你好啊,我是雷工! 01 项目需求分析 根据与需求方沟通,分析需求,一般都有需求分析师来进行项目需求收集与分析。 根据需求文档进行项目功能设计。 02 框架的选择 ①小项目可以根据需求选择两层或三层结构。 ②中型大型项目,至少需要三层架构和其他架构的组合。 03 框…

ESP32 步进电机精准控制:打造高精度 DIY 写字机器人,实现流畅书写体验

摘要: 想让你的 ESP32 不再仅仅是控制灯光的工具吗? 本文将带你使用 ESP32 开发板、步进电机和简单的机械结构打造一个能够自动写字的机器人。我们将深入浅出地讲解硬件连接、软件代码以及控制逻辑,并提供完整的项目代码和电路图,即使是 Ardu…

使用握手信号实现跨时钟域数据传输

目录 描述 输入描述: 输出描述: 参考代码 描述 分别编写一个数据发送模块和一个数据接收模块,模块的时钟信号分别为clk_a,clk_b。两个时钟的频率不相同。数据发送模块循环发送0-7,在每个数据传输完成之后&#xf…

六、数据可视化—首页、列表页制作(爬虫及数据可视化)

六、数据可视化—首页、列表页制作(爬虫及数据可视化) 1,首页制作(1)创建新项目选择flask框架(2)下载模板(3)导入flask框架中进行改写(4)访问服务…

puppeteer 爬虫初探

1. puppeteer 和 puppeteer-core 安装 puppeteer 会默认下载一个最新版本的 chrome 浏览器; 安装 puppeteer-core ,不会安装 chrome, 若要程序打开浏览器运行时,需手动指定电脑系统安装的 chrome 浏览器路径; 2. puppeteer-core …

某大会的影响力正在扩大,吞噬了整个数据库世界!

1.规模空前 你是否曾被那句“上有天堂,下有苏杭”所打动,对杭州的湖光山色心驰神往?7月,正是夏意正浓的时节,也是游览杭州的最佳时期。这座古典与现代交融的城市将迎来了第13届PostgreSQL中国技术大会。作为全球数据库…

禁用windows的语音识别快捷键win+ctrl+s

win11组合键winctrls会弹出语音识别提示,即使到设置里禁用了语音识别也没用 解决办法:安装PowerToys,通过“键盘管理器”-“重新映射快捷键”禁用 PowerToys是微软自己的工具,不用担心安全问题,下载地址:h…

昇思25天学习打卡营第9天|静态图模式的深度剖析与应用指南

目录 背景介绍 动态图模式 静态图模式 静态图模式的使用场景 静态图模式开启方式 基于装饰器的开启方式 基于context的开启方式 静态图的语法约束 JitConfig配置选项 静态图高级编程技巧 背景介绍 AI 编译框架主要包含两种运行模式,即动态图模式与静态图模…

解决GPT-4o耗电难题!DeepMind新算法训练效率提升13倍,能耗降低10倍!

目录 01 有更好的解决方案吗? 02 从“超级batch”中筛选数据 03 技术介绍 04 实验结果 生成可学习batch 谷歌DeepMind推出的新算法JEST,将LLM训练的迭代次数减少了13倍,计算量降低了10倍,有望重塑AI未来。GPT-4o早已成为耗能…

python破解字母已知但大小写未知密码

python穷举已知字符串中某个或多个字符为大写的所有情况 可以使用递归函数来实现这个功能。以下是一个示例代码: def generate_uppercase_combinations(s, index0, current):if index len(s):print(current)returngenerate_uppercase_combinations(s, index 1, …

Debezium报错处理系列之第109篇:解决升级日志解析jar包重启集群出现的字段类型和值不匹配的错误

Debezium报错处理系列之第109篇:解决升级日志解析jar包重启集群出现的字段类型和值不匹配的错误 一、完整报错二、错误原因三、解决方法Debezium从入门到精通系列之:研究Debezium技术遇到的各种错误解决方法汇总: Debezium从入门到精通系列之:百篇系列文章汇总之研究Debezi…

Educational Codeforces Round 167 (Rated for Div. 2)(A~C)题解

A. Catch the Coin 解题思路: 最终&#x1d465;一定会相等&#xff0c;我们考虑直接到下面接住他。 #include<bits/stdc.h> using namespace std; typedef long long ll; #define N 1000005 ll dp[N], w[N], v[N], h[N]; ll dis[1005][1005]; ll a, b, c, n, m, t; ll…

【数据结构与算法】希尔排序

&#x1f493; 博客主页&#xff1a;倔强的石头的CSDN主页 &#x1f4dd;Gitee主页&#xff1a;倔强的石头的gitee主页 ⏩ 文章专栏&#xff1a;《数据结构与算法》 期待您的关注 ​

CH552G使用的pwm出现的问题,及设置

输出pwm的频率周期很不准确 可能是因为没有外部晶振的稳定晶振周期有关。 使用的示波器出现操作失误 在使用小型示波器的过程中发现集成了信号发生器和示波器的连接端口是不同的。刚开始把示波器测试口错插入了信号发生器的接口&#xff0c;困扰好一会儿&#xff0c;幸好用一…

人工智能、机器学习、神经网络、深度学习和卷积神经网络的概念和关系

人工智能&#xff08;Artificial Intelligence&#xff0c;缩写为AI&#xff09;--又称为机器智能&#xff0c;是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能是智能学科重要的组成部分&#xff0c;它企图了解智能的实质…

浅谈进程隐藏技术

前言 在之前几篇文章已经学习了解了几种钩取的方法 浅谈调试模式钩取浅谈热补丁浅谈内联钩取原理与实现导入地址表钩取技术 这篇文章就利用钩取方式完成进程隐藏的效果。 进程遍历方法 在实现进程隐藏时&#xff0c;首先需要明确遍历进程的方法。 CreateToolhelp32Snapsh…

区块链技术如何改变供应链管理?

引言 供应链管理在现代商业中扮演着至关重要的角色&#xff0c;确保产品和服务从原材料到最终消费者的顺利流转。然而&#xff0c;当前的供应链管理面临诸多挑战&#xff0c;如信息不透明、数据篡改和效率低下等问题&#xff0c;这些问题严重制约了供应链的整体效能和可信度&am…

Go:hello world

开启转职->Go开发工程师 下面是我的第一个go的程序 在上面的程序介绍&#xff1a; 1、package main 第一行代码package main定义了包名。必须在源文件中非注释的第一行指明这个文件属于哪个包&#xff0c;如&#xff1a;package main。package main表示一个可独立执行的程…

acwing 291.蒙德里安的梦想

解法&#xff1a; 核心&#xff1a;先放横着的&#xff0c;再放竖着的。 总方案数&#xff0c;等于只放横着的小方块的合法方案数。 如何判断当前方案是否合法&#xff1f;所有剩余位置&#xff0c;能否填充满竖着的小方块。 即按列来看&#xff0c;每一列内部所有连续的空着的…

DoIP-1 简介

1. 概述 DoIP-Diagnostic Over Internet Protocol &#xff0c;基于TCPIP协议族的诊断传输协议 DoIP国际标准定义为ISO 13400&#xff0c;总共由五部分组成&#xff1a;  ISO13400-1DoIP的综述  ISO13400-2DoIP的传输层和网络层服务&#xff08;主体部分&#xff09;  I…