CV- 人工智能-深度学习基础知识

一, 深度学习基础知识

	 1,什么是深度学习?
	   机器学习是实现人工智能的一种途径,深度学习是机器学习的一个子集,也就是说深度学习是实现机器学习的一种方法。
	2,    传统机器学习算术依赖人工设计特征,并进行特征提取,而深度学习方法不需要人工,而是依赖算法自动提取特征。深度学习模仿人类大脑的运行方式,从经验中学习获取知识。这也是深度学习被看做黑盒子,可解释性差的原因。
	
	随着计算机软硬件的飞速发展,现阶段通过深度学习来模拟人脑来解释数据,包括图像,文本,音频等内容。目前深度学习的主要应用领域有:
	
	* 智能手机
	* 语音识别
	* 机器翻译
	* 拍照翻译
	* 自动驾驶

二, 卷积网络

利用全连接神经网络对图像进行处理存在以下两个问题:

  1. 需要处理的数据量大,效率低

假如我们处理一张 1000×1000 像素的图片,参数量如下:

1000×1000×3=3,000,000

这么大量的数据处理起来是非常消耗资源的
2. 图像在维度调整的过程中很难保留原有的特征,导致图像处理的准确率不高.
假如有圆形是1,没有圆形是0,那么圆形的位置不同就会产生完全不同的数据表达。但是从图像的角度来看,图像的内容(本质)并没有发生变化,只是位置发生了变化。所以当我们移动图像中的物体,用全连接升降得到的结果会差异很大,这是不符合图像处理的要求的。

1. CNN网络的构成

CNN网络受人类视觉神经系统的启发,人类的视觉原理:从原始信号摄入开始(瞳孔摄入像素 Pixels),接着做初步处理(大脑皮层某些细胞发现边缘和方向),然后抽象(大脑判定,眼前的物体的形状,是圆形的),然后进一步抽象(大脑进一步判定该物体是只人脸)。

CNN网络主要有三部分构成:卷积层、池化层和全连接层构成,其中卷积层负责提取图像中的局部特征;池化层用来大幅降低参数量级(降维);全连接层类似人工神经网络的部分,用来输出想要的结果。
在这里插入图片描述

2. 卷积层

卷积层是卷积神经网络中的核心模块,卷积层的目的是提取输入特征图的特征,

卷积层是卷积神经网络中的核心模块,卷积层的目的是提取输入特征图的特征,如下图所示,卷积核可以提取图像中的边缘信息。

在这里插入图片描述

3. 卷积层中的一些参数(又称卷积三大件)

     1. padding  特征图比原始图减小了很多,我们可以在原图像的周围进行padding,来保证在卷积过程中特征图大小不变
     2.  stride    按照步长为1来移动卷积核,
     3. kernel_size  卷积核大小,

4. 特征图大小的计算

 输出特征图的大小与以下参数息息相关: * size:卷积核/过滤器大小,一般会选择为奇数,比如有1 * 1, 3 * 3, 5 * 5 * padding:零填充的方式 * stride:步长

5. 池化层(Pooling)

池化层迎来降低了后续网络层的输入维度,缩减模型大小,提高计算速度,并提高了Feature Map 的鲁棒性,防止过拟合,

它主要对卷积层学习到的特征图进行下采样(subsampling)处理,主要由两种

最大池化 ---->Max Pooling,取窗口内的最大值作为输出,这种方式使用较广泛。

平均池化-----> Avg Pooling,取窗口内的所有值的均值作为输出

6. 全连接层

全连接层位于CNN网络的末端,经过卷积层的特征提取与池化层的降维后,将特征图转换成一维向量送入到全连接层中进行分类或回归的操作。

三, 图像分类

  1. 图像分类: 图像分类实质上就是从给定的类别集合中为图像分配对应标签的任务。也就是说我们的任务是分析一个输入图像并返回一个该图像类别的标签。
  2. 分类常用数据集:
    1. mnist数据集
      该数据集是手写数字0-9的集合,共有60k训练图像、10k测试图像、10个类别、图像大小28×28×1.我们可以通过tf.keras直接加载该数据集
      2.CIFAR-10和CIFAR-100
      CIFAR-10数据集5万张训练图像、1万张测试图像、10个类别、每个类别有6k个图像,图像大小32×32×3。
  3. ImageNet
    ImageNet数据集是ILSVRC竞赛使用的是数据集,由斯坦福大学李飞飞教授主导,包含了超过1400万张全尺寸的有标记图片,大约有22000个类别的数据。ILSVRC全称ImageNet Large-Scale Visual Recognition Challenge,是视觉领域最受追捧也是最具权威的学术竞赛之一,代表了图像领域的最高水平。从2010年开始举办到2017年最后一届,使用ImageNet数据集的一个子集,总共有1000类。

四,图像分类网络-VGG

  1. VGG的网络架构特点:
    VGG网络:主要贡献是使用很小的卷积核(3×3)构建卷积神经网络结构,能够取得较好的识别精度,常用来提取图像特征的VGG-16和VGG-19。
    VGG可以看成是加深版的AlexNet,整个网络由卷积层和全连接层叠加而成,和AlexNet不同的是,VGG中使用的都是小尺寸的卷积核(3×3),
    在这里插入图片描述

五, Inception

在这里插入图片描述

  1.   Inception块里有4条并行的线路。前3条线路使用窗口大小分别是1×1、3×3和5×5的卷积层来抽取不同空间尺寸下的信息,其中中间2个线路会对输入先做1×1卷积来减少输入通道数,以降低模型复杂度。第4条线路则使用3×3最大池化层,后接1×1卷积层来改变通道数。4条线路都使用了合适的填充来使输入与输出的高和宽一致。最后我们将每条线路的输出在通道维上连结,并向后进行传输。
    

1×1卷积

它的计算方法和其他卷积核一样,唯一不同的是它的大小是1×1,没有考虑在特征图局部信息之间的关系。
在这里插入图片描述
它的作用主要是:

  • 实现跨通道的交互和信息整合
  • 卷积核通道数的降维和升维,减少网络参数
  1. GoogLeNet主要由Inception模块构成,如下图所示:
    在这里插入图片描述
    整个网络架构我们分为五个模块,每个模块之间使用步幅为2的3×33×3最大池化层来减小输出高宽。

InceptionV2

在InceptionV2中将大卷积核拆分为小卷积核,将V1中的5×5的卷积用两个3×3的卷积替代,从而增加网络的深度,减少了参数。
在这里插入图片描述

InceptionV3

将n×n卷积分割为1×n和n×1两个卷积,例如,一个的3×3卷积首先执行一个1×3的卷积,然后执行一个3×1的卷积,这种方法的参数量和计算量都比原来降低。
在这里插入图片描述

六, ResNet

  1. 什么是ResNet
    ResNet是一种残差网络,
  2. 为什么要引入ResNet?
    网络越深,咱们能获取的信息越多,而且特征也越丰富。但是根据实验表明,随着网络的加深,优化效果反而越差,测试数据和训练数据的准确率反而降低了。这是由于网络的加深会造成梯度爆炸和梯度消失的问题。
  3. ResNet详细解说
    在这里插入图片描述
    咱们要求解的映射为:H(x)
    现在咱们将这个问题转换为求解网络的残差映射函数,也就是F(x),其中F(x) = H(x)-x。

残差:观测值与估计值之间的差。
这里H(x)就是观测值,x就是估计值(也就是上一层ResNet输出的特征映射)。
我们一般称x为identity Function,它是一个跳跃连接;称F(x)为ResNet Function。

那么咱们要求解的问题变成了H(x) = F(x)+x。

有小伙伴可能会疑惑,咱们干嘛非要经过F(x)之后在求解H(x)啊!整这么麻烦干嘛!
咱们开始看图说话:如果是采用一般的卷积神经网络的化,原先咱们要求解的是H(x) = F(x)这个值对不?那么,我们现在假设,在我的网络达到某一个深度的时候,咱们的网络已经达到最优状态了,也就是说,此时的错误率是最低的时候,再往下加深网络的化就会出现退化问题(错误率上升的问题)。咱们现在要更新下一层网络的权值就会变得很麻烦,权值得是一个让下一层网络同样也是最优状态才行。对吧?
但是采用残差网络就能很好的解决这个问题。还是假设当前网络的深度能够使得错误率最低,如果继续增加咱们的ResNet,为了保证下一层的网络状态仍然是最优状态,咱们只需要把令F(x)=0就好啦!因为x是当前输出的最优解,为了让它成为下一层的最优解也就是希望咱们的输出H(x)=x的话,是不是只要让F(x)=0就行了?
当然上面提到的只是理想情况,咱们在真实测试的时候x肯定是很难达到最优的,但是总会有那么一个时刻它能够无限接近最优解。采用ResNet的话,也只用小小的更新F(x)部分的权重值就行啦!不用像一般的卷积层一样大动干戈!
注意:如果残差映射(F(x))的结果的维度与跳跃连接(x)的维度不同,那咱们是没有办法对它们两个进行相加操作的,必须对x进行升维操作,让他俩的维度相同时才能计算。

升维的方法有两种:

全0填充;
采用1*1卷积。

七, 迁移学习

1, 什么是迁移学习
迁移学习(Transfer Learning)是一种机器学习方法,就是把为任务 A 开发的模型作为初始点,重新使用在为任务 B 开发模型的过程中。迁移学习是通过从已学习的相关任务中转移知识来改进学习的新任务
2. 为什么需要迁移学习?
1. 大数据与少标注的矛盾:虽然有大量的数据,但往往都是没有标注的,无法训练机器学习模型。人工进行数据标定太耗时。
2. 大数据与弱计算的矛盾:普通人无法拥有庞大的数据量与计算资源。因此需要借助于模型的迁移。
3. 普适化模型与个性化需求的矛盾:即使是在同一个任务上,一个模型也往往难以满足每个人的个性化需求,比如特定的隐私设置。这就需要在不同人之间做模型的适配。
4. 特定应用(如冷启动)的需求
3. 迁移学习有哪些常用概念?

  • 域(Domain):数据特征和特征分布组成,是学习的主体
    源域 (Source domain):已有知识的域
    目标域 (Target domain):要进行学习的域
    -任务 (Task):由目标函数和学习结果组成,是学习的结果

八, Mobilenet网络

  1. MobileNet系列很重要的轻量级网络家族,出自谷歌,MobileNetV1使用深度可分离卷积来构建轻量级网络,
    算法笔记:
    1.深度可分离卷积

深度可分离卷积 (depthwise separable convolution) 一些轻量级的网络,如mobilenet中,会有深度可分离卷积depthwise separable convolution,由depthwise(DW)和pointwise(PW)两个部分结合起来,用来提取特征feature map。相比常规的卷积操作,其参数数量和运算成本比较低。可分离卷积主要有两种类型:空间可分离卷积和深度可分离卷积。
2. 深度可分离卷积= 深度卷积+逐点卷积

2. Mobilenetv2原理

MobileNetV2提出创新的inverted residual with linear bottleneck单元,虽然层数变多了,但是整体网络准确率和速度都有提升,

3. Mobilenetv3原理

MobileNetV3的整体架构基本沿用了MobileNetV2的设计,采用了轻量级的深度可分离卷积和残差块等结构,依然是由多个模块组成,但是每个模块得到了优化和升级,包括瓶颈结构、SE模块和NL模块。

1, MobileNetV3创新点

MobileNetV3的主要创新在于使用了两个重要的组件:候选块和内积激活函数。

  • 1.候选块
  • 2.内积激活函数

九, 深度学习之—目标检测

计算机视觉中关于图像识别有四大类任务:

分类-Classification:解决“是什么?”的问题,即给定一张图片或一段视频判断里面包含什么类别的目标。

定位-Location:解决“在哪里?”的问题,即定位出这个目标的的位置。

检测-Detection:解决“是什么?在哪里?”的问题,即定位出这个目标的的位置并且知道目标物是什么。

分割-Segmentation:分为实例的分割(Instance-level)和场景分割(Scene-level),语义分割 解决“每一个像素属于哪个目标物或场景”的问题。

十, 目标检测之-iou

  1. 概念
    IOU是旷视科技提出用于定位误差,源于数学中的集合两个Box重合程度,
    ​ IoU (Intersection over Union) 是一种测量在特定数据集中检测相应物体准确度的一个标准。IoU是一个简单的测量标准,只要是在输出中得出一个预测范围(bounding boxex)的任务都可以用IoU来进行测量。为了可以使IoU用于测量任意大小形状的物体检测,我们需要:

ground-truth bounding boxes(人为在训练集图像中标出要检测物体的大概范围)
我们的算法得出的结果范围。
也就是说,这个标准用于测量真实和预测之间的相关度,相关度越高,该值越高。如下图所示。绿色标线是人为标记的正确结果(g

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/781173.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

【网络安全】实验四(网络扫描工具的使用)

一、本次实验的实验目的 (1)掌握使用端口扫描器的技术,了解端口扫描器的原理 (2)会用Wireshark捕获数据包,并对捕获的数据包进行简单的分析 二、搭配环境 打开两台虚拟机,并参照下图&#xff…

sublime 3 背景和字体颜色修改

sublime 4 突然抽风,每次打开都显示 “plugin_host-3.3 has exited unexpectedly, some plugin functionality won’t be available until Sublime Text has been restarted” 一直没调好,所以我退回到sublime 3了。下载好了软件没问题,但是一…

运维系列.Nginx中使用HTTP压缩功能

运维专题 Nginx中使用HTTP压缩功能 - 文章信息 - Author: 李俊才 (jcLee95) Visit me at CSDN: https://jclee95.blog.csdn.netMy WebSite:http://thispage.tech/Email: 291148484163.com. Shenzhen ChinaAddress of this article:https://blog.csdn.net/qq_28550…

Vue3中的Composables组合式函数,Vue3实现minxins

Vue3中的Composables是什么 Vue3中的Composables 简单理解其实就是类React Hooks式的组合式函数封装方法。 Vue官方称为Composables 组合式函数。 1.抽离复用逻辑时 Vue2写法 (1)Vue2 中的mixins混入器写法缺点 (Vue3 optionsApi写法同理) 新建minxins…

【基于R语言群体遗传学】-10-适应性与正选择

在之前的博客中,我们学习了哈代温伯格模型,学习了Fisher模型,学习了遗传漂变与变异的模型,没有看过之前内容的朋友可以先看一下之前的文章: 群体遗传学_tRNA做科研的博客-CSDN博客 一些新名词 (1&#xf…

HCIE之IPV6三大动态协议ISIS BGP (十五)

IPV6 1、三大动态路由协议ipv61.1、ISIS1.1.1、ISIS多拓扑实验(需要详细看下lsdb verbose)1.2、ISIS TLV简单总结 1.2、BGP 2、IPv6 隧道技术2.1、ipv6手工隧道2.1.1、ipv6 gre手工隧道2.1.1.1、 ipv6、ipv4基础配置(省略)2.1.1.2…

【web APIs】快速上手Day05(Bom操作)

目录 Web APIs - 第5天笔记js组成window对象BOM定时器-延迟函数案例-5秒钟之后消失的广告 JS执行机制location对象案例-5秒钟之后跳转的页面 navigator对象histroy对象 本地存储(今日重点)localStorage(重点)sessionStorage&#…

cross attention交叉熵注意力机制

交叉注意力(Cross-Attention)则是在两个不同序列上计算注意力,用于处理两个序列之间的语义关系。在两个不同的输入序列之间计算关联度和加权求和的机制。具体来说,给定两个输入序列,cross attention机制将一个序列中的每个元素与另一个序列中…

Java请求webService,IDEA生成客户端调用代码

Axis是Apache开放源代码组织的一个项目,全称为Apache Extensible Interaction System,简称Axis。它是一个基于Java的SOAP(Simple Object Access Protocol,简单对象访问协议)引擎,提供创建服务器端、客户端和…

Linux基础: 二. Linux的目录和文件

文章目录 二. Linux的目录和文件1.1 目录概要1.2 目录详细说明 二. Linux的目录和文件 1.1 目录概要 command:ls / Linux的文件系统像一棵树一样,树干是根目录(/),树枝是子目录,树叶是文件; …

QML:Settings介绍

用途 提供持久的独立于平台的应用程序设置。 用户通常希望应用程序在会话中记住其设置(窗口大小、位置、选项等)。Settings能够以最小的工作量保存和恢复此类应用程序设置。 通过在Settings元素中声明属性来指定各个设置值。仅支持由QSettings识别的值…

2024 JuniorCryptCTF reppc 部分wp

Random cipher 文本编辑器打开附件 比较简单。脚本 Mutated Caesar 文本编辑器打开附件 比较简单。脚本 Pizza 附件拖入dnSpy 比较简单。脚本 l33t Leet,又称黑客语,是指一种发源于欧美地区的BBS、线上游戏和黑客社群所使用的文字书写方式,通…

Polkadot(DOT)即将爆雷?治理无能还歧视亚洲!资金将在两年内耗尽!是下一个FTX吗?

近期,关于Polkadot(DOT)生态圈的一系列负面消息引发了业界和投资者的广泛关注。从高昂的营销开支、缺乏实际业务亮点,再到治理问题和种族歧视指控,Polkadot似乎正面临着严峻的危机。业内人士警告,Polkadot的财政状况堪忧&#xff…

【C语言】qsort()函数详解:能给万物排序的神奇函数

🦄个人主页:修修修也 🎏所属专栏:C语言 ⚙️操作环境:Visual Studio 2022 目录 一.qsort()函数的基本信息及功能 二.常见的排序算法及冒泡排序 三.逐一解读qsort()函数的参数及其原理 1.void* base 2.size_t num 3.size_t size 4.int (*compar)(c…

机器学习Day12:特征选择与稀疏学习

1.子集搜索与评价 相关特征:对当前学习任务有用的特征 无关特征:对当前学习任务没用的特征 特征选择:从给定的特征集合中选择出相关特征子集的过程 为什么要特征选择? 1.任务中经常碰到维数灾难 2.去除不相关的特征能降低学习的…

认证授权auth

什么是认证授权 认证授权包含 认证和授权两部分。 什么是用户身份认证? 用户身份认证即当用户访问系统资源时,系统要求验证用户的身份信息,身份合法方可继续访问常见的用户身份认证表现形式有 用户名密码登录微信扫码登录等 什么是用户授…

【数据结构】链表带环问题分析及顺序表链表对比分析

【C语言】链表带环问题分析及顺序表链表对比分析 🔥个人主页:大白的编程日记 🔥专栏:C语言学习之路 文章目录 【C语言】链表带环问题分析及顺序表链表对比分析前言一.顺序表和链表对比1.1顺序表和链表的区别1.2缓存利用率&#…

ID3算法决策树

步骤: 先计算出信息量;信息熵;信息增量; 再比较信息增量的大小,确定分类依据。 信息量: 信息熵: 信息增益:

【网络安全】实验五(身份隐藏与ARP欺骗)

一、本次实验的实验目的 (1)了解网络攻击中常用的身份隐藏技术,掌握代理服务器的配置及使用方法 (2)通过实现ARP欺骗攻击,了解黑客利用协议缺陷进行网络攻击的一般方法 二、搭配环境 打开三台虚拟机&#…

IntelliJ IDEA 同时多行同时编辑操作快捷键

首先 点击要编辑的地方,长按鼠标左键不放,同时按住 Ctrl Shift Alt,然后就可以进行多行编辑了