扩散模型笔记2

Ref:扩散模型的原理及实现(Pytorch)

在扩散模型中,每一步添加的噪声并不是完全一样的。具体来说,噪声的添加方式和量在每一步是根据特定的规则或公式变化的。这里我们详细解释每一步添加噪声的过程。

正向过程中的噪声添加:

在扩散模型的正向过程(forward process)中,每一步都会向图像添加一定量的噪声,使其逐渐变成完全噪声化的图像。这种逐步添加噪声的过程通常遵循以下公式:

噪声添加的变化:

具体例子

假设我们有一个原始图像 x0,并且我们定义了一系列系数 αt 来控制每一步添加噪声的量。以下是一个简化的示例代码来展示每一步如何添加不同的噪声:

import numpy as np

# 定义原始图像 x_0(假设为一个二维数组)
x_0 = np.random.rand(64, 64)  # 示例:64x64的随机图像

# 定义时间步数 T 和系数 alpha_t 的序列
T = 1000
alpha = np.linspace(1, 0, T)  # 从 1 逐渐减小到 0

# 初始化 x_t 为原始图像
x_t = x_0.copy()

# 逐步添加噪声
for t in range(T):
    epsilon = np.random.normal(0, 1, x_0.shape)  # 每一步生成新的噪声
    x_t = np.sqrt(alpha[t]) * x_0 + np.sqrt(1 - alpha[t]) * epsilon

# 打印或显示最终生成的噪声图像 x_t
print(x_t)
  • 我们定义了一个从1逐渐减小到0的系数 αt。
  • 在每个时间步 t,我们生成一个新的噪声 ϵ,并按照公式计算新的图像 xt。
  • 随着时间步的增加,αt​ 逐渐减小,噪声的比例逐渐增加。

总结

在扩散模型中,每一步添加的噪声是从标准正态分布中重新采样的,因此每一步的噪声是不同的。系数 αt 控制了每一步中噪声的添加量,通常随着时间步的增加而变化。这种方法确保了噪声逐步增加,使得图像逐渐从原始状态变为完全噪声化的状态。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/780933.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

两种转5V的DCDC电路:

最大电流:5A 最大电流:3A 验证通过:RT8289GSP性能更佳,带载能力更强:

前端JS特效第22波:jQuery滑动手风琴内容切换特效

jQuery滑动手风琴内容切换特效&#xff0c;先来看看效果&#xff1a; 部分核心的代码如下&#xff1a; <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xm…

Guitar Pro8.2让你的吉他弹奏如虎添翼!

亲爱的音乐爱好者们&#xff0c;今天我要跟大家安利一个让我彻底沉迷其中的神器——Guitar Pro8.2&#xff01;这可不是一般的软件&#xff0c;它简直是吉他手们的福音。不管你是初学者还是老鸟&#xff0c;这个打谱软件都能给你带来前所未有的便利和价值。 让我们来聊聊Guita…

昇思25天学习打卡营第9天|ResNet50图像分类

一、Resnet残差网络模型 构建残差网络结构;Building BlockBottleneck 残差结构由两个分支构成&#xff1a;一个主分支 &#x1d439;(&#x1d465;)&#xff0c;一个shortcuts&#xff08;图中弧线表示,&#x1d465;&#xff09;。 得到残差网络结构:&#x1d439;(&#x…

python根据父母身高预测儿子身高

题目 从键盘输入父母的升高&#xff0c;并使用eval()或float()转换输入的数据类型。计算公式&#xff1a;儿子身高&#xff08;父亲身高母亲身高&#xff09;*0.54. father_heighteval(input(请输入爸爸的身高&#xff1a;)) mother_heighteval(input(请输入妈妈的身高&#…

RAID 冗余磁盘阵列

RAID也是Linux操作系统中管理磁盘的一种方式。 只有Linux操作系统才支持LVM的磁盘管理方式。 而RAID是一种通用的管理磁盘的技术&#xff0c;使用于多种操作系统。 优势&#xff1a;提升数据的读写速度&#xff0c;提升数据的可靠性。具体实现哪什么功能&#xff0c;要看你所…

YOLOv8结合SAHI推理图像和视频

文章目录 前言视频效果必要环境一、完整代码二、运行方法1、 推理图像2、 推理视频 总结 前言 在上一篇文章中&#xff0c;我们深入探讨了如何通过结合YOLOv8和SAHI来增强小目标检测效果 &#xff0c;并计算了相关评估指标&#xff0c;虽然我们也展示了可视化功能&#xff0c;…

Open3D 点云的圆柱形邻域搜索

目录 一、概述 1.1原理 1.2应用 二、代码实现 2.1完整代码 2.2程序说明 三、实现效果 3.1原始点云 3.2搜索后点云 一、概述 1.1原理 圆柱邻域搜索的基本思想是确定点云中的哪些点位于给定圆柱的内部。一个圆柱可以由以下几个参数定义&#xff1a; 中心点&#xff1a;…

SpEL表达式相关知识点

SpEL表达式 知识点 Spel概述 Spring 表达式&#xff0c;即 Spring Expression Language&#xff0c;简称 SpEL。 那么是什么SpEL表达式呢&#xff1f; SpEL (Spring Expression Language) 是一种在Spring框架中用于处理表达式的语言。SpEL中的表达式可以支持调用bean的方法…

如何利用Github Action实现自动Merge PR

我是蚂蚁背大象(Apache EventMesh PMC&Committer)&#xff0c;文章对你有帮助给项目rocketmq-rust star,关注我GitHub:mxsm&#xff0c;文章有不正确的地方请您斧正,创建ISSUE提交PR~谢谢! Emal:mxsmapache.com 1. 引言 GitHub Actions 是 GitHub 提供的一种强大而灵活的自…

苍穹外卖 ...待更新

苍穹外卖 1、 阿里云OSS2、菜品分类查询 1、 阿里云OSS 工具类 package com.sky.utils;import com.aliyun.oss.ClientException; import com.aliyun.oss.OSS; import com.aliyun.oss.OSSClientBuilder; import com.aliyun.oss.OSSException; import lombok.AllArgsConstructor…

【QT】显示类控件

显示类控件 显示类控件1. label - 标签2. LCD Number - 显示数字的控件3. ProgressBar - 进度条4. Calendar Widget - 日历5. Line Edit - 输入框6. Text Edit - 多行输入框7. Combo Box - 下拉框8. Spin Box - 微调框9. Date Edit & Time Edit - 日期微调框10. Dial - 旋钮…

自注意力机制和多头注意力机制区别

Ref&#xff1a;小白看得懂的 Transformer (图解) Ref&#xff1a;一文彻底搞懂 Transformer&#xff08;图解手撕&#xff09; 多头注意力机制&#xff08;Multi-Head Attention&#xff09;和自注意力机制&#xff08;Self-Attention&#xff09;是现代深度学习模型&#x…

浅尝Apache Mesos

文章目录 1. Mesos是什么2. 共享集群3. Apache Mesos3.1 Mesos主节点3.2 Mesos代理3.3 Mesos框架 4. 资源管理4.1 资源提供4.2 资源角色4.3 资源预留4.4 资源权重与配额 5. 实现框架5.1 框架主类5.3 实现执行器 6. 小结参考 1. Mesos是什么 Mesos是什么&#xff0c;Mesos是一个…

8、Redis 的线程模型、I/O 模型和多线程

Redis 的线程模型、I/O 模型和多线程 1. Redis 的线程模型 Redis 以其高效的单线程模型著称&#xff0c;从设计之初&#xff0c;Redis 就选择了单线程模式&#xff0c;这在很大程度上简化了其内部实现和维护。单线程模式避免了多线程编程中常见的竞争条件和锁机制问题&#x…

【WebRTC实现点对点视频通话】

介绍 WebRTC (Web Real-Time Communications) 是一个实时通讯技术&#xff0c;也是实时音视频技术的标准和框架。简单来说WebRTC是一个集大成的实时音视频技术集&#xff0c;包含了各种客户端api、音视频编/解码lib、流媒体传输协议、回声消除、安全传输等。对于开发者来说可以…

【云原生】Prometheus监控Docker指标并接入Grafana

目录 一、前言 二、docker监控概述 2.1 docker常用监控指标 2.2 docker常用监控工具 三、CAdvisor概述 3.1 CAdvisor是什么 3.2 CAdvisor功能特点 3.3 CAdvisor使用场景 四、CAdvisor对接Prometheus与Grafana 4.1 环境准备 4.2 docker部署CAdvisor 4.2.2 docker部署…

汉诺塔与青蛙跳台阶

1.汉诺塔 根据汉诺塔 - 维基百科 介绍 1.1 背景 最早发明这个问题的人是法国数学家爱德华卢卡斯。 传说越南河内某间寺院有三根银棒&#xff0c;上串 64 个金盘。寺院里的僧侣依照一个古老的预言&#xff0c;以上述规则移动这些盘子&#xff1b;预言说当这些盘子移动完毕&am…

Java项目:基于SSM框架实现的共享客栈管理系统分前后台【ssm+B/S架构+源码+数据库+毕业论文】

一、项目简介 本项目是一套基于SSM框架实现的共享客栈管理系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、功能…

网页生成二维码、在线演示

https://andi.cn/page/621504.html