Python结合MobileNetV2:图像识别分类系统实战

一、目录

  • 算法模型介绍
  • 模型使用训练
  • 模型评估
  • 项目扩展

二、算法模型介绍

图像识别是计算机视觉领域的重要研究方向,它在人脸识别、物体检测、图像分类等领域有着广泛的应用。随着移动设备的普及和计算资源的限制,设计高效的图像识别算法变得尤为重要。MobileNetV2是谷歌(Google)团队在2018年提出的一种轻量级卷积神经网络模型,旨在在保持准确性的前提下,极大地减少模型的参数数量和计算复杂度,从而适用于移动设备和嵌入式系统等资源受限的场景。

背景:

MobileNetV2是MobileNet系列的第二代模型,而MobileNet系列是谷歌团队专门针对移动设备和嵌入式系统开发的一系列轻量级卷积神经网络。MobileNetV2是MobileNetV1的改进版本,它在保持轻量级特性的同时,进一步提高了模型的准确性和效率。

MobileNetV2算法的提出旨在应对传统卷积神经网络在移动设备上表现不佳的问题,如大量的计算量和参数数量,导致模型无法在资源受限的环境中高效运行。

原理:

MobileNetV2算法通过一系列技术策略来实现高效的图像识别。主要包括:

1. 基础构建块:倒残差结构

MobileNetV2使用了一种称为“倒残差结构”的基础构建块,即Inverted Residual Block。这种结构与传统的残差块相反,通过先降维(用1x1卷积减少通道数)再升维(用3x3深度可分离卷积增加通道数),以实现轻量化和模型复杂度的降低。

2. 激活函数:线性整流线性单元(ReLU6)

MobileNetV2采用了ReLU6作为激活函数,相比于传统的ReLU函数,ReLU6在负值部分输出为0,在正值部分输出为最大值6,使得模型更容易训练且更加鲁棒。

3. 深度可分离卷积

MobileNetV2广泛采用深度可分离卷积(Depthwise Separable Convolution),将标准卷积操作分解为深度卷积和逐点卷积,从而大大减少了计算量和参数数量。

4. 网络架构设计

MobileNetV2通过引入多个不同分辨率的特征图来构建网络。在不同层级上使用这些特征图,使得网络能够在不同尺度下学习到图像的语义特征,提高了图像识别的准确性。

应用:

MobileNetV2由于其轻量级特性和高效的计算能力,被广泛应用于移动设备和嵌入式系统上的图像识别任务。在实际应用中,我们可以使用预训练的MobileNetV2模型,将其迁移到特定的图像识别任务中,从而在资源有限的情况下实现高质量的图像识别。

MobileNetV2在图像分类、目标检测、人脸识别等任务中表现出色,成为了移动端图像识别的首选算法之一。

三、模型使用和训练

在本文中为了演示如何实现一个图像识别分类系统,通过选取了5种常见的水果数据集,其文件夹结构如下图所示。

在完成数据集的收集准备后,打开jupyter notebook平台,导入数据集通过以下代码可以计算出数据集的总图片数量。本次使用的数据集总图片约为400张。

import pathlib

data_dir = "./dataset/"
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)

然后通过构建算法模型,由于在TensorFlow中内置了MobileNetV2预训练模型,所以我们可以直接导入该模型。

这段代码的作用是构建一个基于MobileNetV2的图像识别模型,并加载预训练的权重,同时冻结MobileNetV2的卷积部分的权重。后续可以在此基础上进行微调(Fine-tuning),训练该模型以适应特定的图像识别任务。

然后导入训练集、测试集指定其迭代次数,开始训练。

history  = model.fit(train_ds,
                  validation_data=val_ds,
                  epochs=30
                    )

其训练过程如下图所示:

四、模型评估

如下图所示,通过命令查看最后通过model.save方法保存好的模型大小。

模型相比ResNet系列,VGG系列等动辄好几百M的大小相比缩小了许多,便于移动设备的移植安装。

通过打印LOSS图和ACC曲线图观察其模型训练过程,如下图所示。

五、项目扩展

在完成模型训练后,通过model.save方法保存模型为本地文件,然后就可以基于改模型开发出非常多的应用了,比如开发出API接口给别人调用等。

在本项目中基于Django框架开发了一个网页版的识别界面,在该网页界面系统中,用户可以点击鼠标上传一张图片,然后点击按钮进行检测。同时可以将相关识别的相关信息保存在数据库中,管理员通过登录后台可以查看所有的识别信息,为模型优化提供数据支持。

演示视频+代码:
https://www.yuque.com/ziwu/yygu3z/sr43e6q0wormmfpv

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/779712.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

数据结构基础--------【二叉树基础】

二叉树基础 二叉树是一种常见的数据结构,由节点组成,每个节点最多有两个子节点,左子节点和右子节点。二叉树可以用来表示许多实际问题,如计算机程序中的表达式、组织结构等。以下是一些二叉树的概念: 二叉树的深度&a…

高考选专业,兴趣与就业前景该如何平衡?

从高考结束的那一刻开始,有些家长和学生就已经变得焦虑了,因为他们不知道成绩出来的时候学生应该如何填报志愿,也不知道选择什么样的专业,毕竟大学里面的专业丰富多彩,如何选择确实是一门学问,而对于学生们…

Zynq7000系列FPGA中DMA引擎编程指南

DMA引擎的编程指南通常涉及一系列步骤和API调用,以确保数据在内存之间的高效传输,而无需CPU的直接干预。 DMA引擎的编程指南包括以下部分: 一、编写微代码为AXI事务编写CCRx程序 通道微码用于设置dmac.CCRx寄存器以定义AXI事务的属性。这是…

Node.js-path 模块

path 模块 path 模块提供了 操作路径 的功能,如下是几个较为常用的几个 API: 代码实例: const path require(path);//获取路径分隔符 console.log(path.sep);//拼接绝对路径 console.log(path.resolve(__dirname, test));//解析路径 let pa…

java反射介绍

Java反射API允许你在运行时检查和修改程序的行为。这意味着你可以动态地创建对象、查看类的字段、方法和构造函数,甚至调用它们。这是一个强大的特性,但也应该谨慎使用,因为它可以破坏封装性。 以下是使用Java反射的一些常见用途:…

041基于SSM+Jsp的高校校园点餐系统

开发语言:Java框架:ssm技术:JSPJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包…

OPENCV(图像入门笔记)

使用OpenCV读取图像 使用cv.imread()函数读取图像。 第一个参数为图像名称 第二个参数是一个标志,它指定了读取图像的方式。分别有三种 cv.IMREAD_COLOR: 加载彩色图像。任何图像的透明度都会被忽视。它是默认标志。 cv.IMREAD_GRAYSCALE:以…

什么是 HTTP POST 请求?初学者指南与示范

在现代网络开发领域,理解并应用 HTTP 请求 方法是基本的要求,其中 "POST" 方法扮演着关键角色。 理解 POST 方法 POST 方法属于 HTTP 协议的一部分,主旨在于向服务器发送数据以执行资源的创建或更新。它与 GET 方法区分开来&…

Linux:Ubuntu18.04下开机自启动QT图形化界面

Linux:Ubuntu18.04下开机自启动QT图形化界面 Chapter1 Linux:Ubuntu18.04下开机自启动QT图形化界面一、创建rc.local文件二、建立rc-local.service文件三、启动服务查看启动状态四、重启 Chapter2 将QT应用作为开机自启动(Linux系统&#xff…

预约停车位app小程序模板

简单的手机预约停车位,在线停车位,预约停车管理小程序页面模板。包含:主页、预约停车、预约管理、地图导航等。 预约停车位app小程序模板

bash条件判断基础adsawq1`1nn

判断的作用 判断后续操作的提前条件是否满足如果满足执行一种命令不满足则执行另一种指令 条件测试类型: 整型测试字符测试文字测试 整数测试:比较两个整数谁大谁小,是否相等; 二元测试: num1 操作符 num2 -eq: 等于…

Flink,spark对比

三:az 如何调度Spark、Flink,MR 任务 首先,使用java编写一个spark任务,定义一个类,它有main方法,里面写好逻辑,sparkConf 和JavaSparkContext 获取上下文,然后打成一个jar包&#xf…

基于机器学习(霍特林统计量,高斯混合模型,支持向量机)的工业数据异常检测(MATLAB R2021B)

近年来,隨着集散控制系统、工业物联网、智能仪表等信息技术在现代工业生产系统中的应用,生产过程的运行状态能够以大量数据的形式被感知和记录。基于数据的故障诊断方法以过程数据为基础,采用统计分析、统计学习、信号处理等方法,…

笔记:SpringBoot+Vue全栈开发2

笔记:SpringBootVue全栈开发2 1. MVVM模式2. Vue组件化开发3. 第三方组件element-ui的使用4. axios网络请求5. 前端路由VueRouter 1. MVVM模式 MVVM是Model-View-ViewModel的缩写,是一种基于前端开发的架构模式,其核心是提供对View和ViewMod…

【简单介绍下Memcached】

🌈个人主页: 程序员不想敲代码啊 🏆CSDN优质创作者,CSDN实力新星,CSDN博客专家 👍点赞⭐评论⭐收藏 🤝希望本文对您有所裨益,如有不足之处,欢迎在评论区提出指正,让我们共…

独立开发者系列(21)——HTTP协议的使用

作为网络访问的必备知识点,http协议,我们已经知道http协议属于tcp的一种,而且一般是用于网络通讯的,但是本身http协议本身包含的内容也很多,正是因为有这种协议,前后端和各种硬件接口/服务器接口/前端&…

VSCode远程服务器如何上传下载文件(超方便!)

方法一: 1、在VSCode应用商店安装SFTP插件 2、然后就可以直接把文件拖进VSCode即可,如下图所示: 这里的目录是我远程服务器上的目录,可以直接将要上传的文件直接拖进需要的文件夹 3、如果要从远程服务器上下载文件到本地&#x…

手写实现一个ORM框架

手写实现一个ORM框架 什么是ORM框架、ORM框架的作用效果演示框架设计代码细节SqlBuilderSqlExecutorStatementHandlerParameterHandlerResultSetHandler逆序生成实体类 大家好,本人最近写了一个ORM框架,想在这里分享给大家,让大家来学习学习。…

axios的使用,处理请求和响应,axios拦截器

1、axios官网 https://www.axios-http.cn/docs/interceptors 2、安装 npm install axios 3、在onMouunted钩子函数中使用axios来发送请求,接受响应 4.出现的问题: (1) 但是如果发送请求请求时间过长,回出现请求待处…

分布式共识算法

分布式的基石 分布式共识算法 前置知识:分布式的 CAP 问题,在事务一章中已有详细介绍。 正式开始探讨分布式环境中面临的各种技术问题和解决方案以前,我们先把目光从工业界转到学术界,学习两三种具有代表性的分布式共识算法&…