【踩坑】探究PyTorch中创建稀疏矩阵的内存占用过大的问题

转载请注明出处:小锋学长生活大爆炸[xfxuezhagn.cn]

如果本文帮助到了你,欢迎[点赞、收藏、关注]哦~


目录

问题复现

原因分析

解决方案

碎碎念


问题复现

        创建一个COO格式的稀疏矩阵,根据计算公式,他应该只占用约5120MB的内存:

        但通过nvidia-smi查看,实际上占用了10240MB:

        网上对此的讨论又是没有找到,只好又是自己一点点摸索。

原因分析

        对于CUDA的内存问题,那就可以使用torch.cuda.memory_stats()来看他的内存使用情况:

coo_matrix = sparse_matrix.to_sparse_coo()
print(torch.cuda.memory_stats())

        输出结果:

OrderedDict([('active.all.allocated', 24), ('active.all.current', 6), ('active.all.freed', 18), ('active.all.peak', 8), ('active.large_pool.allocated', 11), ('active.large_pool.current', 6), ('active.large_pool.freed', 5), ('active.large_pool.peak', 8), ('active.small_pool.allocated', 13), ('active.small_pool.current', 0), ('active.small_pool.freed', 13), ('active.small_pool.peak', 2), ('active_bytes.all.allocated', 15313152512), ('active_bytes.all.current', 8598454272), ('active_bytes.all.freed', 6714698240), ('active_bytes.all.peak', 13967163392), ('active_bytes.large_pool.allocated', 15312696832), ('active_bytes.large_pool.current', 8598454272), ('active_bytes.large_pool.freed', 6714242560), ('active_bytes.large_pool.peak', 13967163392), ('active_bytes.small_pool.allocated', 455680), ('active_bytes.small_pool.current', 0), ('active_bytes.small_pool.freed', 455680), ('active_bytes.small_pool.peak', 80896), ('allocated_bytes.all.allocated', 15313152512), ('allocated_bytes.all.current', 8598454272), ('allocated_bytes.all.freed', 6714698240), ('allocated_bytes.all.peak', 13967163392), ('allocated_bytes.large_pool.allocated', 15312696832), ('allocated_bytes.large_pool.current', 8598454272), ('allocated_bytes.large_pool.freed', 6714242560), ('allocated_bytes.large_pool.peak', 13967163392), ('allocated_bytes.small_pool.allocated', 455680), ('allocated_bytes.small_pool.current', 0), ('allocated_bytes.small_pool.freed', 455680), ('allocated_bytes.small_pool.peak', 80896), ('allocation.all.allocated', 24), ('allocation.all.current', 6), ('allocation.all.freed', 18), ('allocation.all.peak', 8), ('allocation.large_pool.allocated', 11), ('allocation.large_pool.current', 6), ('allocation.large_pool.freed', 5), ('allocation.large_pool.peak', 8), ('allocation.small_pool.allocated', 13), ('allocation.small_pool.current', 0), ('allocation.small_pool.freed', 13), ('allocation.small_pool.peak', 2), ('inactive_split.all.allocated', 3), ('inactive_split.all.current', 1), ('inactive_split.all.freed', 2), ('inactive_split.all.peak', 2), ('inactive_split.large_pool.allocated', 1), ('inactive_split.large_pool.current', 1), ('inactive_split.large_pool.freed', 0), ('inactive_split.large_pool.peak', 1), ('inactive_split.small_pool.allocated', 2), ('inactive_split.small_pool.current', 0), ('inactive_split.small_pool.freed', 2), ('inactive_split.small_pool.peak', 1), ('inactive_split_bytes.all.allocated', 20376064), ('inactive_split_bytes.all.current', 12451840), ('inactive_split_bytes.all.freed', 7924224), ('inactive_split_bytes.all.peak', 14548480), ('inactive_split_bytes.large_pool.allocated', 15808000), ('inactive_split_bytes.large_pool.current', 12451840), ('inactive_split_bytes.large_pool.freed', 3356160), ('inactive_split_bytes.large_pool.peak', 12451840), ('inactive_split_bytes.small_pool.allocated', 4568064), ('inactive_split_bytes.small_pool.current', 0), ('inactive_split_bytes.small_pool.freed', 4568064), ('inactive_split_bytes.small_pool.peak', 2096640), ('max_split_size', -1), ('num_alloc_retries', 0), ('num_ooms', 0), ('oversize_allocations.allocated', 0), ('oversize_allocations.current', 0), ('oversize_allocations.freed', 0), ('oversize_allocations.peak', 0), ('oversize_segments.allocated', 0), ('oversize_segments.current', 0), ('oversize_segments.freed', 0), ('oversize_segments.peak', 0), ('requested_bytes.all.allocated', 15313145274), ('requested_bytes.all.current', 8598453372), ('requested_bytes.all.freed', 6714691902), ('requested_bytes.all.peak', 13967161592), ('requested_bytes.large_pool.allocated', 15312695031), ('requested_bytes.large_pool.current', 8598453372), ('requested_bytes.large_pool.freed', 6714241659), ('requested_bytes.large_pool.peak', 13967161592), ('requested_bytes.small_pool.allocated', 450243), ('requested_bytes.small_pool.current', 0), ('requested_bytes.small_pool.freed', 450243), ('requested_bytes.small_pool.peak', 80000), ('reserved_bytes.all.allocated', 14250147840), ('reserved_bytes.all.current', 14250147840), ('reserved_bytes.all.freed', 0), ('reserved_bytes.all.peak', 14250147840), ('reserved_bytes.large_pool.allocated', 14248050688), ('reserved_bytes.large_pool.current', 14248050688), ('reserved_bytes.large_pool.freed', 0), ('reserved_bytes.large_pool.peak', 14248050688), ('reserved_bytes.small_pool.allocated', 2097152), ('reserved_bytes.small_pool.current', 2097152), ('reserved_bytes.small_pool.freed', 0), ('reserved_bytes.small_pool.peak', 2097152), ('segment.all.allocated', 10), ('segment.all.current', 10), ('segment.all.freed', 0), ('segment.all.peak', 10), ('segment.large_pool.allocated', 9), ('segment.large_pool.current', 9), ('segment.large_pool.freed', 0), ('segment.large_pool.peak', 9), ('segment.small_pool.allocated', 1), ('segment.small_pool.current', 1), ('segment.small_pool.freed', 0), ('segment.small_pool.peak', 1)])

        这里快速推进。实际上我们只需要看reserved_bytes和active_bytes。其中,active_bytes.all.current 表示当前正在使用的所有活跃内存总量。在输出中,这个值为 8598454272 字节,约等于 8192 MBreserved_bytes.all.current 表示当前已保留的所有内存总量。在输出中,这个值为 14250147840 字节,约等于 13595 MB

        因此,很明显这多出来的内存占用,实际上是reserved_bytes搞的

  • 活跃内存(Active Memory):指当前正在使用的显存量,包括已经分配并且正在使用的内存。
  • 保留内存(Reserved Memory):指已经分配但尚未使用的显存量。这些内存空间可能会被保留以备将来使用,或者是由于内存碎片而导致的无法立即分配给新的内存请求。总的来说,保留的所有内存总量是由系统根据实时的内存使用情况和策略进行动态调整和触发的。它的目的是优化内存的分配和释放,以提高系统的性能和稳定性。

解决方案

        知道了原因,那么就很好处理了。我们可以通过torch.cuda.empty_cache()清空缓存来删掉这部分保留的内存:

coo_matrix = sparse_matrix.to_sparse_coo()
print('memory_allocated: ', torch.cuda.memory_allocated())
print('memory_reserved: ', torch.cuda.memory_reserved())
torch.cuda.empty_cache()
print('empty_cache done!')
print('memory_allocated: ', torch.cuda.memory_allocated())
print('memory_reserved: ', torch.cuda.memory_reserved())

输出:

memory_allocated:  8598454272
memory_reserved:  14250147840
empty_cache done!
memory_allocated:  8598454272
memory_reserved:  8613003264

        可以看到已经成功删除了多的部分。


碎碎念

        1、可能还有其他方法,欢迎评论讨论~

        2、如果不是后面不会再有GPU内存申请了,这个保留内存实际还是建议保留的。比如以下这个连续创建矩阵的,那么在创建第二个矩阵的时候,就不会再去申请新的内存,而是会放在保留内存里。因此这样会更高效一点:

A = create_dense_matrix(size, device=env.device)
B = create_dense_matrix(size, device=env.device)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/777836.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

54、一维和二维自组织映射(matlab)

1、一维和二维自组织映射原理 一维和二维自组织映射(Self-Organizing Maps, SOM)是一种无监督的机器学习算法,通过学习输入数据的拓扑结构,将高维输入数据映射到低维的网格结构中,使得相似的输入数据点在映射空间中也…

win7系统快速安装python

下载安装包 建议选择python3.8左右的,我下载的是3.7.8,最新版本的pythonwin7可能不支持 python网址 下拉寻找 安装python 1.双击安装包 更换完地址选择安装(install) 安装完成后点击close即可 测试是否安装成功 1.winr快捷键打开黑窗口输入cmd …

七大排序-冒泡排序,插入排序,希尔排序(一)

目录 排序冒泡排序插入排序冒泡排序和插入排序的对比希尔排序 排序 先写单趟,再写多趟,这样比较好写 排序可以理解为对商品价格的排序,对数字大小的排序,排序再生活中随处可见 冒泡排序 冒泡排序就是两个相邻的数交换&#xff…

跨界客户服务:拓展服务边界,创造更多价值

在当今这个日新月异的商业时代,跨界合作已不再是新鲜词汇,它如同一股强劲的东风,吹散了行业间的壁垒,为企业服务创新开辟了前所未有的广阔天地。特别是在客户服务领域,跨界合作正以前所未有的深度和广度,拓…

mysql 9 新特新

mysql9新特性 新特性Audit Log NotesC API NotesCharacter Set SupportCompilation NotesComponent NotesConfiguration NotesData Dictionary NotesData Type NotesDeprecation and Removal NotesEvent Scheduler NotesJavaScript ProgramsOptimizer NotesPerformance Schema …

微机原理与单片机 知识体系梳理

单片机笔记分享 我个人感觉单片机要记的东西很多,也很琐碎,特别是一些位、寄存器以及相关作用等,非常难以记忆。因此复习时将知识点整理在了一起做成思维导图,希望对大家有所帮助。内容不是很多,可能有些没覆盖全&…

Python人形机踊跃跨栏举重投篮高维数动作算法模型

🎯要点 🎯运动功能: 1 m / s 1 m / s 1m/s上台阶、站立平衡、 1 m / s 1 m / s 1m/s行走、坐椅子、 5 m / s 5 m / s 5m/s跑步、 1 m / s 1 m / s 1m/s爬行、穿越森林、取物、穿越迷宫、 1 m / s 1 m / s 1m/s上滑梯、 5 m / s 5 m / s 5m/s…

iOS多target时怎么对InfoPlist进行国际化

由于不同target要显示不同的App名称、不同的权限提示语,国际化InfoPlist文件必须创建名称为InfoPlist.strings的文件,那么多个target时怎么进行国际化呢?步骤如下: 一、首先我们在项目根目录创建不同的文件夹对应多个不同的targe…

自然之美无需雕琢

《自然之美,无需雕琢 ”》在这个颜值至上的时代,但在温馨氛围中,单依纯以一种意想不到的方式,为我们诠释了自然之美的真谛。而医生的回答,如同一股清流耳目一新。“我说医生你看我这张脸,有没有哪里要动的。…

09 docker 安装tomcat 详解

目录 一、安装tomcat 1. tomcat镜像的获取 2. docker创建容器实列 3. 访问测试 404错误 4. 解决方案 5. 使用免修改版容器镜像 5.1. 运行实列的创建 5.2. 出现问题及解决: 6. 验证 OK 一、安装tomcat 1. tomcat镜像的获取 docker search tomcat #docker …

最灵活且易用的C++开源串口通信调试软件

这款C开源串口调试软件,集成了丰富的功能,为用户提供高效、便捷的串口通信调试体验。以下是其核心功能亮点: 基础功能: 数据交互自如:支持串口数据的轻松读取与发送,让数据交换变得简单直接。 灵活配置参…

【后端面试题】【中间件】【NoSQL】MongoDB查询优化3(拆分、嵌入文档,操作系统)

拆分大文档 很常见的一种优化手段,在一些特定的业务场景中,会有一些很大的文档,这些文档有很多字段,而且有一些特定的字段还特别的大。可以考虑拆分这些文档 大文档对MongoDB的性能影响还是很大的,就我个人经验而言&…

【TB作品】基于ATmega48的开机登录程序设计

使用Proteus仿真软件设计一个开机登录程序,单片机选用ATmegga48. 基础要求: 1.程序启动后在LCD1602液晶屏上提示用户通过独立按键输入密码(6位)。 2.密码输入错误则在屏幕上提示密码错误,密码输入正确则在屏幕上提示密 码正确后等待约3秒后进入主界面,在屏幕中央显示HelloWorld…

基于RK3588的8路摄像头实时全景拼接

基于RK3588的8路摄像头实时全景拼接 输入:2路csi转8路mpi的ahd摄像头,分辨率1920 * 1080 8路拼接结果: 6路拼接结果: UI界面: UI节目设计原理

数字时代如果你的企业还未上线B端系统助力则后果很严重

**数字时代如果你的企业还未上线B端系统助力则后果很严重** 数字化浪潮席卷全球,企业对于数字化转型的重视程度日益提高。B端系统,作为企业数字化转型的核心组成部分,其重要性不言而喻。如果你的企业还未上线B端系统助力,那么后果…

异步主从复制

主从复制的概念 主从复制是一种在数据库系统中常用的数据备份和读取扩展技术,通过将一个数据库服务器(主服务器)上的数据变更自动同步到一个或多个数据库服务器(从服务器)上,以此来实现数据的冗余备份、读…

2024年6月后2周重要的大语言模型论文总结:LLM进展、微调、推理和对齐

本文总结了2024年6月后两周发表的一些最重要的大语言模型论文。这些论文涵盖了塑造下一代语言模型的各种主题,从模型优化和缩放到推理、基准测试和增强性能。 LLM进展与基准 1、 BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Com…

图文识别0难度上手~基于飞浆对pdf简易ocr并转txt

前言 本篇pdf适用windows对视觉识别0基础的的纯小白用户。大佬请绕道~~ 注意: 本项目pdf的ocr对于表格、画图文字,水印等干扰没做任何处理,因此希望各位使用该功能的pdf尽量不要含有这些干扰项,以免影响翻译效果。 流程 1.构建…

收银系统源码-收银台副屏广告

1. 功能描述 门店广告:双屏收银机,副屏广告,主屏和副屏同步,总部可统一控制广告位,也可以给门店开放权限,门店独立上传广告位; 2.适用场景 新店开业、门店周年庆、节假日门店活动宣传&#x…

Nginx实战:nginx性能压测(ab)

在nginx的生产实践中,不管是服务上线,还是性能优化,都会遇到需要对nginx的性能压测,本文介绍一个简单的压测工具:ab命令 ab(Apache Bench)是一个常用的HTTP压力测试工具,可以用来测试Nginx的性能和压力。ab命令可以指定并发请求数、请求数、请求类型等参数,并输出测试…