计算机竞赛 Yolov安全帽佩戴检测 危险区域进入检测 - 深度学习 opencv

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 Yolov安全帽佩戴检测 危险区域进入检测

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

建筑工人头部伤害是造成建筑伤亡事故的重要原因。佩戴安全帽是防止建筑工人发生脑部外伤事故的有效措施,而在实际工作中工人未佩戴安全帽的不安全行为时有发生。因此,对施工现场建筑工人佩戴安全帽自动实时检测进行探究,将为深入认知和主动预防安全事故提供新的视角。然而,传统的施工现场具有安全管理水平低下、管理范围小、主要依靠安全管理人员的主观监测并且时效性差、不能全程监控等一系列问题。
本项目基于yolov5实现了安全帽和危险区域检测。

2 效果演示

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 Yolov5框架

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强
:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

  ①==>40×40×255
    

    ②==>20×20×255
    
    ③==>10×10×255


​    

在这里插入图片描述

  • 相关代码

      class Detect(nn.Module):
      stride = None  # strides computed during build
      onnx_dynamic = False  # ONNX export parameter
    
      def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
          super().__init__()
          self.nc = nc  # number of classes
          self.no = nc + 5  # number of outputs per anchor
          self.nl = len(anchors)  # number of detection layers
          self.na = len(anchors[0]) // 2  # number of anchors
          self.grid = [torch.zeros(1)] * self.nl  # init grid
          self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
          self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
          self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
          self.inplace = inplace  # use in-place ops (e.g. slice assignment)
    
      def forward(self, x):
          z = []  # inference output
          for i in range(self.nl):
              x[i] = self.m[i](x[i])  # conv
              bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
              x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
    
              if not self.training:  # inference
                  if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                      self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
          
                  y = x[i].sigmoid()
                  if self.inplace:
                      y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                      y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                  else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                      xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                      wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                      y = torch.cat((xy, wh, y[..., 4:]), -1)
                  z.append(y.view(bs, -1, self.no))
          
        return x if self.training else (torch.cat(z, 1), x)
    
      def _make_grid(self, nx=20, ny=20, i=0):
          d = self.anchors[i].device
          if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
              yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
          else:
              yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
          grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
          anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
              .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
          return grid, anchor_grid
    

4 数据处理和训练

4.1 安全帽检测

这里只是判断 【人没有带安全帽】、【人有带安全帽】、【人体】 3个类别 ,基于 data/coco128.yaml 文件,创建自己的数据集配置文件
custom_data.yaml。
创建自己的数据集配置文件

    # 训练集和验证集的 labels 和 image 文件的位置
​    train: ./score/images/train
​    val: ./score/images/val
​    

    # number of classes
    nc: 3
    
    # class names
    names: ['person', 'head', 'helmet']



创建每个图片对应的标签文件
使用 data/gen_data/gen_head_helmet.py 来将 VOC 的数据集转换成 YOLOv5 训练需要用到的格式。
使用标注工具类似于 Labelbox 、CVAT 、精灵标注助手 标注之后,需要生成每个图片对应的 .txt 文件,其规范如下:

  • 每一行都是一个目标
  • 类别序号是零索引开始的(从0开始)
  • 每一行的坐标 class x_center y_center width height 格式
  • 框坐标必须采用归一化的 xywh格式(从0到1)。如果您的框以像素为单位,则将x_center和width除以图像宽度,将y_center和height除以图像高度。

代码如下:

import numpy as np
​    def convert(size, box):"""
​        将标注的 xml 文件生成的【左上角x,左上角y,右下角x,右下角y】标注转换为yolov5训练的坐标
​        :param size: 图片的尺寸: [w,h]
​        :param box: anchor box 的坐标 [左上角x,左上角y,右下角x,右下角y,]
​        :return: 转换后的 [x,y,w,h]
​        """
​    

        x1 = int(box[0])
        y1 = int(box[1])
        x2 = int(box[2])
        y2 = int(box[3])
    
        dw = np.float32(1. / int(size[0]))
        dh = np.float32(1. / int(size[1]))
    
        w = x2 - x1
        h = y2 - y1
        x = x1 + (w / 2)
        y = y1 + (h / 2)
    
        x = x * dw
        w = w * dw
        y = y * dh
        h = h * dh
        return [x, y, w, h]



生成的 .txt 例子:


​ 1 0.1830000086920336 0.1396396430209279 0.13400000636465847 0.15915916301310062
​ 1 0.5240000248886645 0.29129129834473133 0.0800000037997961 0.16816817224025726
​ 1 0.6060000287834555 0.29579580295830965 0.08400000398978591 0.1771771814674139
​ 1 0.6760000321082771 0.25375375989824533 0.10000000474974513 0.21321321837604046
​ 0 0.39300001866649836 0.2552552614361048 0.17800000845454633 0.2822822891175747
​ 0 0.7200000341981649 0.5570570705458522 0.25200001196935773 0.4294294398277998
​ 0 0.7720000366680324 0.2567567629739642 0.1520000072196126 0.23123123683035374

选择模型
在文件夹 ./models 下选择一个你需要的模型然后复制一份出来,将文件开头的 nc = 修改为数据集的分类数,下面是借鉴
./models/yolov5s.yaml来修改的

# parameters
​    nc: 3  # number of classes     <============ 修改这里为数据集的分类数
​    depth_multiple: 0.33  # model depth multiple
​    width_multiple: 0.50  # layer channel multiple# anchors
    anchors:
      - [10,13, 16,30, 33,23]  # P3/8
      - [30,61, 62,45, 59,119]  # P4/16
      - [116,90, 156,198, 373,326]  # P5/32
    
    # YOLOv5 backbone
    backbone:
      # [from, number, module, args]
      [[-1, 1, Focus, [64, 3]],  # 0-P1/2
       [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
       [-1, 3, BottleneckCSP, [128]],
       [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
       [-1, 9, BottleneckCSP, [256]],
       [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
       [-1, 9, BottleneckCSP, [512]],
       [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
       [-1, 1, SPP, [1024, [5, 9, 13]]],
       [-1, 3, BottleneckCSP, [1024, False]],  # 9
      ]
    
    # YOLOv5 head
    head:
      [[-1, 1, Conv, [512, 1, 1]],
       [-1, 1, nn.Upsample, [None, 2, 'nearest']],
       [[-1, 6], 1, Concat, [1]],  # cat backbone P4
       [-1, 3, BottleneckCSP, [512, False]],  # 13
    
       [-1, 1, Conv, [256, 1, 1]],
       [-1, 1, nn.Upsample, [None, 2, 'nearest']],
       [[-1, 4], 1, Concat, [1]],  # cat backbone P3
       [-1, 3, BottleneckCSP, [256, False]],  # 17
    
       [-1, 1, Conv, [256, 3, 2]],
       [[-1, 14], 1, Concat, [1]],  # cat head P4
       [-1, 3, BottleneckCSP, [512, False]],  # 20
    
       [-1, 1, Conv, [512, 3, 2]],
       [[-1, 10], 1, Concat, [1]],  # cat head P5
       [-1, 3, BottleneckCSP, [1024, False]],  # 23
    
       [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
      ]

开始训练
这里选择了 yolov5s 模型进行训练,权重也是基于 yolov5s.pt 来训练

    
    python train.py --img 640 \
                    --batch 16 --epochs 10 --data ./data/custom_data.yaml \
                    --cfg ./models/custom_yolov5.yaml --weights ./weights/yolov5s.pt

4.2 检测危险区域内是否有人

危险区域标注方式

使用的是 精灵标注助手 标注,生成了对应图片的 json 文件

执行侦测

    python area_detect.py --source ./area_dangerous --weights ./weights/helmet_head_person_s.pt

效果
危险区域会使用 红色框 标出来,同时,危险区域里面的人体也会被框出来,危险区域外的人体不会被框选出来。
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/77733.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

VUE3 Hooks的面向对象实现方式

本文会以三种形式实现一个组件&#xff0c;该组件实现以下功能&#xff1a; 1.显示一个数字&#xff08;可从prop给初始值&#xff09;和一个添加按钮&#xff1b; 2.点击添加按钮数字增加&#xff1b; 3.当数字大于5时&#xff0c;数字颜色变红&#xff0c;并提交error事件…

Redis详解

Redis 简介 Redis&#xff08;Remote Dictionary Server&#xff09;是一个开源的高性能键值对存储数据库&#xff0c;最初由 Salvatore Sanfilippo 开发&#xff0c;它在内存中存储数据&#xff0c;并提供了持久化功能&#xff0c;可以将数据保存到磁盘中&#xff0c;是一种N…

如何利用 ChatGPT 进行自动数据清理和预处理

推荐&#xff1a;使用 NSDT场景编辑器助你快速搭建可二次编辑的3D应用场景 ChatGPT 已经成为一把可用于多种应用的瑞士军刀&#xff0c;并且有大量的空间将 ChatGPT 集成到数据科学工作流程中。 如果您曾经在真实数据集上训练过机器学习模型&#xff0c;您就会知道数据清理和预…

LabVIEW开发设计热稳定器

LabVIEW开发设计热稳定器 使用与PC控制单元接口的电子设备进行数据采集和控制已广泛用于不同的工业应用。精确的温度控制是一个巨大的挑战&#xff0c;这就是为什么一些工业应用需要使用适当的材料和设备比更好的温度精度。 ​ 为了追踪[-50至250C]之间的温度变化&#xff0c…

Kafka第一课概述与安装

生产经验 面试重点 Broker面试重点 代码,开发重点 67 章了解 如何记录行为数据 1. Kafka概述 1.产生原因 前端 传到日志 日志传到Flume 传到HADOOP 但是如果数据特比大&#xff0c;HADOOP就承受不住了 2.Kafka解决问题 控流消峰 Flume传给Kafka 存到Kafka Hadoop 从Kafka…

《cpolar内网穿透》外网SSH远程连接linux(CentOS)服务器

本次教程我们来实现如何在外公网环境下&#xff0c;SSH远程连接家里/公司的Linux CentOS服务器&#xff0c;无需公网IP&#xff0c;也不需要设置路由器。 视频教程 [video(video-jrpesBrv-1680147672481)(type-csdn)(url-CSDN直播https://live-file.csdnimg.cn/release/live/…

UI自动化环境的搭建(python+pycharm+selenium+chrome)

最近在做一些UI自动化的项目&#xff0c;为此从环境搭建来从0到1&#xff0c;希望能够帮助到你&#xff0c;同时也是自我的梳理。将按照如下进行开展&#xff1a; 1、python的下载、安装&#xff0c;python环境变量的配置。 2、pycharm开发工具的下载安装。 3、selenium的安装。…

[低端局][cx32L003] 移植U8G2

文章目录 一、简介&#xff08;1&#xff09;U8g2&#xff08;2&#xff09;U8x8 二、配置要求三、移植步骤&#xff08;1&#xff09;文件准备和添加&#xff08;2&#xff09;实现回调接口(I2C的读写函数)①软件I2C②硬件I2C &#xff08;3&#xff09;功能裁剪① u8g2_d_set…

也许你正处于《孤注一掷》中的“团队”,要留心了

看完这部电影&#xff0c;心情久久不能平静&#xff0c;想了很多&#xff0c;倒不是担心自己哪天也成为“消失的yaozi”&#xff0c;而是在想&#xff0c;我们每天所赖以生存的工作&#xff0c;跟电影里他们的工作比&#xff0c;差别在哪里呢&#xff1f; 目录 1. 产品的本质…

2023 年值得关注的 8 个最佳免费开发者工具

开发者工具对开发人员的重要性不言而喻&#xff0c;保持最新工具的更新可以显著提高你的工作效率并简化您的工作流程。随着技术的快速发展&#xff0c;新的开发工具不断被引入市场。今天&#xff0c;我们将分享 2023 年你值得关注的最新开发者工具。 1.Plaky Plaky 是一种基于…

SASS 学习笔记

SASS 学习笔记 总共会写两个练手项目&#xff0c;成品在 https://goldenaarcher.com/scss-study 可以看到&#xff0c;代码在 https://github.com/GoldenaArcher/scss-study。 什么是 SASS SASS 是 CSS 预处理&#xff0c;它提供了变量&#xff08;虽然现在 CSS 也提供了&am…

【rust/egui】(一)从编译运行template开始

说在前面 rust新手&#xff0c;egui没啥找到啥教程&#xff0c;这里自己记录下学习过程环境&#xff1a;windows11 22H2rust版本&#xff1a;rustc 1.71.1egui版本&#xff1a;0.22.0eframe版本&#xff1a;0.22.0rust windows安装参考&#xff1a;这里本文默认读者已安装相关环…

大语言模型之三 InstructGPT训练过程

大语言模型 GPT历史文章中简介的大语言模型的的发展史&#xff0c;并且简要介绍了大语言模型的训练过程&#xff0c;本篇文章详细阐述训练的细节和相关的算法。 2020年后全球互联网大厂、AI创业公司研发了不少AI超大模型&#xff08;百亿甚至千亿参数&#xff09;&#xff0c;…

使用dockerfile手动构建JDK11镜像运行容器并校验

Docker官方维护镜像的公共仓库网站 Docker Hub 国内无法访问了&#xff0c;大部分镜像无法下载&#xff0c;准备逐步构建自己的镜像库。【转载aliyun官方-容器镜像服务 ACR】Docker常见问题 阿里云容器镜像服务ACR&#xff08;Alibaba Cloud Container Registry&#xff09;是面…

ADIS16470和ADIS16500从到手到读出完整数据,附例程

由于保密原因&#xff0c;不能上传我这边的代码&#xff0c;我所用的开发环境是IAR&#xff0c; 下边转载别的博主的文章&#xff0c;他用的是MDK 下文的博主给了你一个很好的思路&#xff0c;特此提出表扬 最下方是我做的一些手册批注&#xff0c;方便大家了解这个东西 原文链…

MySQL 函数

mysql 函数语法 create function 函数名&#xff08;参数名 参数类型&#xff0c;。。。&#xff09; returns type —返回值类型 ----returns 有个 s [characteristics…] begin 函数体 ### 函数体中肯定有 return 语句 end 参数列表 指定参数为 IN | out | INOUT 只对存储过程…

【NAS群晖drive异地访问】使用cpolar远程访问内网Synology Drive「内网穿透」

文章目录 前言1.群晖Synology Drive套件的安装1.1 安装Synology Drive套件1.2 设置Synology Drive套件1.3 局域网内电脑测试和使用 2.使用cpolar远程访问内网Synology Drive2.1 Cpolar云端设置2.2 Cpolar本地设置2.3 测试和使用 3. 结语 前言 群晖作为专业的数据存储中心&…

空气IT

现代社会中&#xff0c;空气质量成为了人们关注的焦点之一。随着工业化的发展&#xff0c;汽车尾气、工厂排放和燃煤等行为导致城市空气污染日益严重&#xff0c;给人们的健康和生活质量带来了极大的威胁。 首先&#xff0c;空气污染对人体健康造成了严重的危害。空气中的颗粒…

分布式 - 消息队列Kafka:Kafka生产者架构和配置参数

文章目录 1. kafka 生产者发送消息整体架构2. Kafka 生产者重要参数配置01. acks02. 消息传递时间03. linger.ms04. buffer.memory05. batch.size06. max.in.flight.requests.per.connection07. compression.type08. max.request.size09. receive.buffer.bytes和 send.buffer.b…

解读2023年上半年财报:净利润达11.08亿元,东鹏做对了什么?

“累了、困了&#xff0c;喝东鹏特饮”&#xff0c;这句朗朗上口的广告词是很多人对于功能性饮料的第一印象。而这句经典广告词背后的公司便是如今发展如日中天的东鹏饮料。近些年&#xff0c;东鹏饮料凭借快准狠的营销、推广打法&#xff0c;迅速在功能性饮料市场攻城略地&…