夏威夷等全球多地深陷「末日狂烧」,关键时刻 AI 监测能否跑赢野火?

内容一览:当地时间 8 月 8 日,美国夏威夷州突发野火,当地居民和游客不得不跳入太平洋中躲避火势。截至 8 月 17 日,这场野火已经造成110 人死亡,超过 1000人失踪。与此同时,美国、加拿大、法国等地也正遭遇野火侵袭。野火无情,面对突发的野火,人们很难做出迅速的反应。现在,在 AI的帮助下,对野火的监测和预防有了新进展。

关键词:野火 人工智能 可解释性 AI

作者|雪菜
编辑|三羊

本文首发于 HyperAI 超神经微信公众平台

地球正不可逆地经历着全球变暖。据欧盟哥白尼气候变化服务局 (C3S) 统计,2023 年 7 月是 1940 年以来全球平均气温最高的月份,温度较前工业革命时期的平均气温上升了约 1.5°C,超过了《巴黎协定》设定的临界值。
在这里插入图片描述

图 1:1940-2023 年 7 月的全球平均气温[1]
全球变暖带来的最直观的感受就是高温。在森林茂盛的地区,高温干燥的气候极易引发野火 (Wild fire)。8 月 8 日,美国夏威夷州毛伊岛突发野火。野火乘着台风「朵拉」,迅速席卷了森林,并蔓延到了当地的文化中心——拉海纳,造成数万人无家可归。

与此同时,在气候干燥的北美洲西部地区,野火也在肆虐。美国加拿大火情资源管理系统 (FIRMS, Fire Information for Resouce Management System US/Canada) 的火情地图显示,近一周加拿大西部地区蔓延着过火面积超过 1000 英亩的野火,而在美国东部也存在大量的着火点
在这里插入图片描述

图 2:近一周北美洲火情地图[2]
野火迅猛无情,面对突如其来的野火,人们很难做出及时的反应。但如今,我们可以利用 AI 对野火进行实时监测和预测,将野火带来的损失降到最低

预测野火三叉戟

地理数据:澳洲高校开发 XAI

2023 年 5 月,澳大利亚国立大学的 Abolfazl Abdollahi 和悉尼科技大学的 Biswajeet Pradhan,利用可解释性 AI (XAI),对澳大利亚吉普斯兰市的不同地理因素进行综合分析,得到了当地的野火发生概率分布图,为预测野火的发生提供了新方法。

在这里插入图片描述

图 3:预测野火发生概率的 XAI 工作流
对野火发生概率影响较大的地理特征包括环境因素、地质因素、植被因素和气象因素。本研究中,研究者主要使用了以下 11 个特征,包括降水量、风速、气温、湿度、植被分布、植被面积、植物中的燃料氮、水分以及该地区的海拔、坡度和方位。

研究选用吉普斯兰市 521 个野火发生点,在 2019-2020 年的中分辨率成像光谱仪 (MODIS) 数据、热异常数据以及火灾历史数据进行训练,并通过交叉验证和保留数据集的方式,对训练集进行处理,确保训练过程的准确。

首先,交叉验证技术会将训练集随机分为 5 个子集,其中 4 个子集用于模型训练,1 个子集作为验证集。

在这里插入图片描述
图 4:模型训练过程。蓝色数据用于训练,橙色数据用于验证
训练完成后,将吉普斯兰的环境、地质、植被、气象特征输入模型,可以得到这一地区完整的野火发生概率图,如图所示,模型预测结果和该地的历史野火区域基本一致,说明 XAI 可以根据地理特征对野火发生进行有效预测

在这里插入图片描述

图 5:模型预测结果与历史野火区域对比
a:XAI 模型预测的野火发生概率图;

b:吉普斯兰的历史野火区域图。

论文地址:
https://www.sciencedirect.com/science/article/pii/S0048969723016224

视频数据:基于烟雾识别起火点

基于地理数据的野火预测只能提高人们的警觉,却无法对野火的发生进行实时观测。为此,美国加利福尼亚州林业防火部,与加利福尼亚大学圣迭戈分校 (UCSD) 基于 AI,合作开发了名为 ALERTCalifornia 的野火预防项目。这一项目通过分布在加利福尼亚州的 1000 余个摄像机对当地进行监测,借助 AI 识别异常状况,向应急指挥中心发出警报,提醒值班人员确认是否可能有野火发生。

在这里插入图片描述

图 6:ALERTCalifornia 摄像机分布及实时画面
这一项目于 2023 年 7 月正式投入运行,很快就派上了用场。凌晨 3 点,一个摄像机监测到了位于圣迭戈市东部 80 公里的克利夫兰国家森林的火情。由于事发深夜,烟雾很难被发现,肉眼很难识别这一着火点,极易导致火势蔓延。但 AI 及时向消防队长发出了警报,并帮助消防部门在 45 分钟内将野火扑灭。

然而,这一技术在开发过程中也面临诸多挑战。其中之一便是,如何让 AI 准确分辨野火和其他干扰因素,做出准确判断。森林中存在大量可能引发假警报的因素,包括形状迥异的云、空气中的灰尘、甚至是过路卡车排放的尾气。在百余位专家的共同努力下,AI 在经过了数周训练及迭代后,准确率有了显著提升。

ALERTCalifornia 地址
https://cameras.alertcalifornia.org/

卫星数据:二次筛选的近实时野火监测

在特定区域,摄像机可以对野火进行有效监测,但这一方法很难大规模推广,尤其是在一些地域广博、地形复杂的区域,布置和维护摄像机的成本会大幅增加。因此,实时卫星数据也可以作为 AI 的武器,用于野火的实时监测

电子科技大学何彬彬课题组,结合随机森林模型 (Random Forest) 和空间上下文算法 (Spatical Contextual Algorithm) 构建了机器学习模型,通过卫星数据实现了近实时的野火监测。

传统的 AI 野火识别系统往往使用单一算法,因此带来数据遗漏或误报。本研究中,数据首先经过随机森林模型进行严格筛选,避免遗漏。随后用阈值相对较低的空间上下文算法进行二次筛选,排除掉假警报,以此提高监测模型的准确率。

在这里插入图片描述

图 7:野火识别模型的工作流
科研人员以日本宇宙航空研究开发机构 (JAXA) 和美国航空航天局 (NASA) 记录的野火数据为训练集,对模型进行训练。随后,将 2020 至 2022 年的发生野火位置的卫星数据作为验证数据,让模型进行判断。

在这里插入图片描述

图 8:野火识别模型的卫星数据验证结果
图中可以看到,对于大部分火灾,这一模型可以准确定位野火源头,做出及时的预警。AI 野火识别模型以实时卫星数据作为数据源,结合随机森林模型和空间上下文算法,降低了模型的漏报率和误报率,实现了近实时的野火预警。

论文地址
https://www.mdpi.com/2272228

野火扑救:一场与时间的赛跑

野火的主要诱因是人类活动,如无人看管的营火、随手乱丢的烟头或是设备的不规范使用。此次夏威夷野火的可能原因就是电力设施受损。火苗在全球变暖带来的高温干燥环境和台风「朵拉」的共同影响下,迅猛发展,为当地居民带来了巨大损失。

在这里插入图片描述

图 9:野火之后的拉海纳[3]
野火的扑救是一场与时间的赛跑。据估计,野火每小时可以蔓延约 23 公里,着火面积在 4 个小时内将会扩大 4 倍。2017 年的美国加利福尼亚州托马斯野火每秒可以蔓延一个足球场的面积,最终持续燃烧了 3 个多月。

因此,野火的监测和扑救往往需要用到多种技术,以在最短时间内发现着火点,将野火尽快扑灭,避免其扩散。目前我国监测野火有六道防线,分别是卫星监测、飞机监测巡护、林区瞭望塔台、视频监控系统、地面巡护和网络舆情感知

在多种技术的加持下,我国森林火灾次数已由 2010 年的 7723 起降至 2022 年的 709 起。然而,2019 年四川省木里县的森林火灾和 2020 年的四川省西昌市森林火灾,都导致了重大的人员伤亡,森林火灾的监测和预防依然面临挑战。

目前,地理数据、视频数据及卫星数据都可以作为 AI 的原始数据,用于野火的早期判断,将火情扼杀在摇篮之中。虽然我国幅员辽阔,各地的气候地形差异较大,很难实现野火的彻底预防, 。

本文首发于 HyperAI 超神经微信公众平台

参考链接:

[1]https://climate.copernicus.eu/july-2023-warmest-month-earths-recent-history

[2]https://firms2.modaps.eosdis.nasa.gov/

[3]https://www.washingtonpost.com/climate-environment/2023/08/10/hawaii-wildfire-maps/

[4]https://www.bjnews.com.cn/detail/168429261314778.html

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/77609.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

消息队列总结

前言 你用过消息队列么? 说说你们项目里是怎么用消息队列的? 我们有一个订单系统,订单系统会每次下一个新订单的时候,就会发送一条消息到ActiveMQ里面去,后台有一个库存系统,负责获取消息,然后…

实时会话简易版

1、数据存储 Redis缓存、pgsql数据库 2、存储使用 2.1、Redis缓存 1)无序集合set:存储未读会话id 2)list(左进右出):存储会话未读消息 2.2、pgsql数据库 存储用户信息,存储会话id&#…

09 - 连续的多个commit整理成1个

查看所有文章链接:(更新中)GIT常用场景- 目录 文章目录 将连续的多个commit整理成1个 将连续的多个commit整理成1个 将anranxiaohunzhang和xianglongshibazhang合并起来(将anranxiaohunzhang合并到降龙十八掌上,生成新…

【校招VIP】java语言考点之ConcurrentHashMap1.7和1.8

考点介绍: ConcurrentHashMap是JAVA校招面试的热门考点,主要集中在1.7和1.8的底层结构和相关的性能提高。 理解这个考点要从map本身的并发问题出发,再到hashTable的低性能并发安全,引申到ConcurrentHashMap的分块处理。同时要理解…

R语言实现计算净重新分类指数(NRI)和综合判别改善指数(IDI)

两个模型比较,与第一个模型相比,NRI(重新分对的 - 重新分错的)/总人数。IDI(新模型患者平均预测概率-旧模型患者平均预测概率)-(新模型非患者平均预测概率-旧模型非患者平均预测概率&#xff09…

nginx代理请求到内网不同服务器

需求:之前用的是frp做的内网穿透,但是每次电脑断电重启,路由或者端口会冲突,现在使用汉土云盒替换frp。 需要把公网ip映射到任意一台内网服务器上,然后在这台内网服务器上用Nginx做代理即可访问内网其它服务器&#xf…

如何使用CSS实现一个渐变背景效果?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 使用CSS实现渐变背景效果⭐ 线性渐变(Linear Gradient)⭐ 径向渐变(Radial Gradient)⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订…

微服务实战项目-学成在线-项目优化(redis缓存优化)

微服务实战项目-学成在线-项目优化(redis缓存优化) 1 优化需求 视频播放页面用户未登录也可以访问,当用户观看试学课程时需要请求服务端查询数据,接口如下: 1、根据课程id查询课程信息。 2、根据文件id查询视频信息。 这些接口在用户未认…

W6100-EVB-PICO 做UDP Server进行数据回环测试(七)

前言 前面我们用W6100-EVB-PICO 开发板在TCP Client和TCP Server模式下,分别进行数据回环测试,本章我们将用开发板在UDP Server模式下进行数据回环测试。 UDP是什么?什么是UDP Server?能干什么? UDP (User Dataqram P…

带你了解—使用内网穿透,公网远程访问本地硬盘文件

文章目录 前言1. 下载cpolar和Everything软件3. 设定http服务器端口4. 进入cpolar的设置5. 生成公网连到本地内网穿透数据隧道 总结 前言 随着云概念的流行,不少企业采用云存储技术来保存办公文件,同时,很多个人用户也感受到云存储带来的便利…

打造专属照片分享平台:快速上手Piwigo网页搭建

文章目录 通过cpolar分享本地电脑上有趣的照片:部署piwigo网页前言1.Piwigo2. 使用phpstudy网页运行3. 创建网站4. 开始安装Piwogo 总结 🍀小结🍀 🎉博客主页:小智_x0___0x_ 🎉欢迎关注:&#x…

我国农机自动驾驶系统需求日益增长,北斗系统赋能精准农业

中国现代农业的发展,离不开智能化、自动化设备,迫切需要自动驾驶系统与农用机械的密切结合。自动驾驶农机不仅能够缓解劳动力短缺问题,提升劳作生产效率,同时还能对农业进行智慧化升级,成为解决当下农业痛点的有效手段…

『论文精读』Data-efficient image Transformers(DeiT)论文解读

『论文精读』Data-efficient image Transformers(DeiT)论文解读 文章目录 一. DeiT简介二. 知识蒸馏(knowledge distillation)2.1. KLDivloss2.2. 蒸馏温度 τ \tau τ2.3. distillation in transformer 三. better hyperparameter四. data augmentation五. label smoothing参…

C语言快速回顾(三)

前言 在Android音视频开发中,网上知识点过于零碎,自学起来难度非常大,不过音视频大牛Jhuster提出了《Android 音视频从入门到提高 - 任务列表》,结合我自己的工作学习经历,我准备写一个音视频系列blog。C/C是音视频必…

一分钟上手Vue VueI18n Internationalization(i18n)多国语言系统开发、国际化、中英文语言切换!

这里以Vue2为例子 第一步:安装vue-i18n npm install vue-i18n8.26.5 第二步:在src下创建js文件夹,继续创建language文件夹 在language文件夹里面创建zh.js、en.js、index.js这仨文件 这仨文件代码分别如下: zh.js export de…

踩坑串口通信 serialPort.RtsEnable = true

背景: 最近在调试一个激光模块,使用的是422通信,然后买了一个485转422的转换器。 通过串口监控软件观察,明明和串口助手发的东西一模一样,但是就是不返回! 解决方案: 我加了,这句&…

Java课题笔记~ 日期处理

2.8 日期处理 2.8.1 日期注入 日期类型不能自动注入到方法的参数中。需要单独做转换处理。 使用DateTimeFormat注解,需要在springmvc.xml文件中添加mvc:annotation-driven/标签。 (1)在方法的参数上使用DateTimeFormat注解 RequestMappi…

【mysql】—— 表的增删改查

目录 序言 (一)Create操作 1、单行数据 全列插入 2、多行数据 指定列插入 3、插入否则更新 4、直接替换 (二)Retrieve操作 1、SELECT 列 1️⃣全列查询 2️⃣指定列查询 3️⃣查询字段为表达式 4️⃣为查询结果指定…

机器学习基础笔记

文章目录 1.机器学习简介1.1 机器学习的一般功能1.2 机器学习的应用1.3 机器学习的方法1.4 机器学习的种类1.5 机器学习的常用框架 2. Spark机器学习2.1 MLlib介绍2.2 MLlib的数据格式2.2.1 本地向量2.2.2 标签数据 2.3 MLlib与ml2.4 MLlib的应用场景 3.Spark环境搭建4.向量与矩…

【C语言】回调函数,qsort排序函数的使用和自己实现,超详解

文章目录 前言一、回调函数是什么二、回调函数的使用1.使用标准库中的qsort函数2.利用qsort函数对结构体数组进行排序 三、实现qsort函数总结 先记录一下访问量突破2000啦,谢谢大家支持!!! 这里是上期指针进阶链接,方便…