【带你全面了解 RAG,深入探讨其核心范式、关键技术及未来趋势】

文末有福利!

大型语言模型(LLMs)已经成为我们生活和工作的一部分,它们以惊人的多功能性和智能化改变了我们与信息的互动方式。

然而,尽管它们的能力令人印象深刻,但它们并非无懈可击。这些模型可能会产生误导性的 “幻觉”,依赖的信息可能过时,处理特定知识时效率不高缺乏专业领域的深度洞察,同时在推理能力上也有所欠缺。

在现实世界的应用中,数据需要不断更新以反映最新的发展,生成的内容必须是透明可追溯的,以便控制成本并保护数据隐私。因此,简单依赖于这些 “黑盒” 模型是不够的,我们需要更精细的解决方案来满足这些复杂的需求。

正是在这样的背景下,检索增强生成技术(Retrieval-Augmented Generation,RAG)应时而生,成为 AI 时代的一大趋势。

RAG 通过在语言模型生成答案之前,先从广泛的文档数据库中检索相关信息,然后利用这些信息来引导生成过程,极大地提升了内容的准确性和相关性。RAG 有效地缓解了幻觉问题,提高了知识更新的速度,并增强了内容生成的可追溯性,使得大型语言模型在实际应用中变得更加实用和可信。RAG 的出现无疑是人工智能研究领域最激动人心的进展之一。

本篇综述将带你全面了解 RAG,深入探讨其核心范式关键技术未来趋势,为读者和实践者提供对大型模型以及 RAG 的深入和系统的认识,同时阐述检索增强技术的最新进展和关键挑战。

论文链接:

https://arxiv.org/abs/2312.10997

官方仓库:

https://github.com/Tongji-KGLLM/RAG-Survey

1、RAG 是什么?

▲ 图1. RAG 技术在 QA 问题中的案例

一个典型的 RAG 案例如图所示。如果我们向 ChatGPT 询问 OpenAI CEO Sam Atlman 在短短几天内突然解雇随后又被复职的事情。由于受到预训练数据的限制,缺乏对最近事件的知识,ChatGPT 则表示无法回答。RAG 则通过从外部知识库检索最新的文档摘录来解决这一差距。

在这个例子中,它获取了一系列与询问相关的新闻文章。这些文章,连同最初的问题,随后被合并成一个丰富的提示,使 ChatGPT 能够综合出一个有根据的回应。
在这里插入图片描述

2、RAG 技术范式发展

RAG 的概念首次于 2020 年被提出,随后进入高速发展。RAG 技术的演进历程如图所示,相关研究进展可以明确地划分为数个关键阶段。在早期的预训练阶段,研究的焦点集中在如何通过预训练模型注入额外的知识,以此增强语言模型的能力。

随着 ChatGPT 的面世,对于运用大型模型进行深层次上下文学习的兴趣激增,这推动了 RAG 技术在研究领域的快速发展。随着 LLMs 的潜力被进一步开发,旨在提升模型的可控性并满足不断演变的需求,RAG 的研究逐渐聚焦于增强推理能力,并且也探索了在微调过程中的各种改进方法。

特别是随着 GPT-4 的发布,RAG 技术经历了一次深刻的变革。研究重点开始转移至一种新的融合 RAG 和微调策略的方法,并且持续关注对预训练方法的优化。

▲ 图2. RAG 技术发展的科技树

在 RAG 的技术发展过程中,我们从技术范式角度,将其总结成如下几个阶段:

朴素(Naive RAG)

前文案例中展示了经典的 RAG 流程,也被称为 Naive RAG。主要包括包括三个基本步骤:

  1. 索引 — 将文档库分割成较短的 Chunk,并通过编码器构建向量索引。

  2. 检索 — 根据问题和 chunks 的相似度检索相关文档片段。

  3. 生成 — 以检索到的上下文为条件,生成问题的回答。

进阶的 RAG(Advanced RAG)

Naive RAG 在检索质量、响应生成质量以及增强过程中存在多个挑战。Advanced RAG 范式随后被提出,并在数据索引、检索前和检索后都进行了额外处理。

通过更精细的数据清洗、设计文档结构和添加元数据等方法提升文本的一致性、准确性和检索效率。在检索前阶段则可以使用问题的重写、路由和扩充等方式对齐问题和文档块之间的语义差异。在检索后阶段则可以通过将检索出来的文档库进行重排序避免 “Lost in the Middle ” 现象的发生。或是通过上下文筛选与压缩的方式缩短窗口长度。

模块化 RAG(Modular RAG)

随着 RAG 技术的进一步发展和演变,新的技术突破了传统的 Naive RAG 检索 — 生成框架,基于此我们提出模块化 RAG 的概念。在结构上它更加自由的和灵活,引入了更多的具体功能模块,例如查询搜索引擎、融合多个回答。技术上将检索与微调、强化学习等技术融合。流程上也对 RAG 模块之间进行设计和编排,出现了多种的 RAG 模式。

然而,模块化 RAG 并不是突然出现的,三个范式之间是继承与发展的关系。Advanced RAG 是 Modular RAG 的一种特例形式,而 Naive RAG 则是 Advanced RAG 的一种特例。

▲ 图3. RAG 范式对比图

3、如何进行检索增强?

RAG 系统中主要包含三个核心部分,分别是 “检索”,“增强” 和 “生成”。正好也对应的 RAG 中的三个首字母。想要构建一个好的 RAG 系统,增强部分是核心,则需要考虑三个关键问题:检索什么?什么时候检索?怎么用检索的内容?

检索增强的阶段:在预训练、微调和推理三个阶段中都可以进行检索增强,这决定了外部知识参数化程度的高低,对应所需要的计算资源也不同。

检索增强的数据源:增强可以采用多种形式的数据,包括非结构化的文本数据,如文本段落、短语或单个词汇。此外,也可以利用结构化数据,比如带有索引的文档、三元组数据或子图。另一种途径是不依赖外部信息源,而是充分发挥 LLMs 的内在能力,从模型自身生成的内容中检索。

检索增强的过程:最初的检索是一次性过程,在 RAG 发展过程中逐渐出现了迭代检索、递归检索以及交由 LLMs 自行判断检索时刻的自适应检索方法。

▲ 图4. RAG 核心组件的分类体系

4、RAG 和微调应该如何选择?

除了 RAG,LLMs 主要优化手段还包括了提示工程 (Prompt Engineering)、微调 (Fine-tuning,FT)。他们都有自己独特的特点。根据对外部知识的依赖性和模型调整要求上的不同,各自有适合的场景。

RAG 就像给模型一本教科书,用于定制的信息检索,非常适合特定的查询。另一方面,FT 就像一个学生随着时间的推移内化知识,更适合模仿特定的结构、风格或格式。FT 可以通过增强基础模型知识、调整输出和教授复杂指令来提高模型的性能和效率。然而,它不那么擅长整合新知识或快速迭代新的用例。RAG 和 FT,并不是相互排斥的,它们可以是互补的,联合使用可能会产生最佳性能。

▲ 图5. RAG 与其他大模型微调技术对比

如何评价 RAG?

RAG 的评估方法多样,主要包括三个质量评分:上下文相关性、答案忠实性和答案相关性。此外,评估还涉及四个关键能力:噪声鲁棒性、拒答能力、信息整合和反事实鲁棒性。这些评估维度结合了传统量化指标和针对 RAG 特性的专门评估标准,尽管这些标准尚未统一。

在评估框架方面,存在如 RGB 和 RECALL 这样的基准测试,以及 RAGAS、ARES 和 TruLens 等自动化评估工具,它们有助于全面衡量 RAG 模型的表现。表中汇总了如何将传统量化指标应用于 RAG 评估以及各种 RAG 评估框架的评估内容,包括评估的对象、维度和指标,为深入理解 RAG 模型的性能和潜在应用提供了宝贵信息。

那么,如何系统的去学习大模型LLM?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

作为一名热心肠的互联网老兵,我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。

但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

所有资料 ⚡️ ,朋友们如果有需要全套 《LLM大模型入门+进阶学习资源包》,扫码获取~ , 【保证100%免费

在这里插入图片描述

篇幅有限,部分资料如下:
👉LLM大模型学习指南+路线汇总👈

💥大模型入门要点,扫盲必看!
在这里插入图片描述
💥既然要系统的学习大模型,那么学习路线是必不可少的,这份路线能帮助你快速梳理知识,形成自己的体系。
在这里插入图片描述

👉大模型入门实战训练👈

💥光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。
在这里插入图片描述

👉国内企业大模型落地应用案例👈

💥《中国大模型落地应用案例集》 收录了52个优秀的大模型落地应用案例,这些案例覆盖了金融、医疗、教育、交通、制造等众多领域,无论是对于大模型技术的研究者,还是对于希望了解大模型技术在实际业务中如何应用的业内人士,都具有很高的参考价值。 (文末领取)

在这里插入图片描述
💥《2024大模型行业应用十大典范案例集》 汇集了文化、医药、IT、钢铁、航空、企业服务等行业在大模型应用领域的典范案例。

在这里插入图片描述

👉LLM大模型学习视频👈

💥观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。 (文末领取)

在这里插入图片描述

👉640份大模型行业报告👈

💥包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
在这里插入图片描述

👉获取方式:
这份完整版的大模型 LLM 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

😝有需要的小伙伴,可以Vx扫描下方二维码免费领取🆓

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/773644.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

google::protobuf命名空间下常用的C++ API----message.h

#include <google/protobuf/message.h> namespace google::protobuf 假设您有一个消息定义为: message Foo {optional string text 1;repeated int32 numbers 2; } 然后&#xff0c;如果你使用 protocol编译器从上面的定义生成一个类&#xff0c;你可以这样使用它: …

[C++][设计模式][访问器]详细讲解

目录 1.动机2.模式定义3.要点总结4.代码感受1.代码一2.代码二 1.动机 在软件构件过程中&#xff0c;由于需求的变化&#xff0c;某些类层次结构中常常需要增加新的行为(方法)&#xff0c;如果直接在基类中做这样的更改&#xff0c; 将会给子类带来很繁重的变更负担&#xff0c…

快手矩阵管理系统:开启短视频营销的智能时代

在短视频内容营销的浪潮中&#xff0c;快手矩阵管理系统以其独特的优势和功能&#xff0c;成为品牌和个人创作者不可或缺的工具。本文将详细解析快手矩阵管理系统的核心功能&#xff0c;探讨它如何帮助用户高效管理多平台、多账号的内容发布和互动。 快手矩阵管理系统概述 快…

【Java EE】Spring IOCDI

Spring IOC & DI 文章目录 Spring IOC & DI一、Spring是什么&#xff1f;二、IOC(控制反转)2.1 通俗理解2.2 造汽车的例子理解IOC2.3 IOC详解1. 获取Bean2. 方法注解——Bean1. 应用场景&#xff1a;2. 应用方法&#xff1a;3. 注意要点&#xff1a; 特别注意: 四、DI4…

Superset超火的企业级可视化BI分析工具

Superset&#xff0c;听起来就像是超级集合&#xff0c;确实&#xff0c;它几乎集合了所有你需要的数据功能。简单说&#xff0c;它就是一个现代化、功能强大的数据可视化工具。 它支持各种数据库&#xff0c;有着丰富的可视化选项&#xff0c;可以用来创建漂亮的数据仪表盘&a…

【数据清洗中分段线性插值法原理】

数据清洗中分段线性插值法原理 一、什么是分段线性插值法&#xff1f;二、分段线性插值法的数学原理三、分段线性插值法的应用步骤1. 引入库2. 创建示例数据3. 应用分段线性插值法4. 可视化插值结果 一、什么是分段线性插值法&#xff1f; 分段线性插值法通过在已知数据点之间…

【C语言】return 关键字

在C语言中&#xff0c;return是一个关键字&#xff0c;用于从函数中返回值或者结束函数的执行。它是函数的重要组成部分&#xff0c;负责将函数的计算结果返回给调用者&#xff0c;并可以提前终止函数的执行。 主要用途和原理&#xff1a; 返回值给调用者&#xff1a; 当函数执…

[leetcode hot 150]第一百一十七题,填充每个节点的下一个右侧节点

题目&#xff1a; 给定一个二叉树&#xff1a; struct Node {int val;Node *left;Node *right;Node *next; } 填充它的每个 next 指针&#xff0c;让这个指针指向其下一个右侧节点。如果找不到下一个右侧节点&#xff0c;则将 next 指针设置为 NULL 。 初始状态下&#x…

【图卷积网络】GCN基础原理简单python实现

基础原理讲解 应用路径 卷积网络最经典的就是CNN&#xff0c;其 可以提取图片中的有效信息&#xff0c;而生活中存在大量拓扑结构的数据。图卷积网络主要特点就是在于其输入数据是图结构数据&#xff0c;即 G ( V , E ) G(V,E) G(V,E)&#xff0c;其中V是节点&#xff0c;E是…

C语言 指针和数组——指针的算术运算

目录 指针的算术运算 指针加上一个整数 指针减去一个整数 指针相减 指针的关系比较运算 小结 指针的算术运算 指针加上一个整数 指针减去一个整数 指针相减 指针的关系比较运算 小结  指针变量 – 指针类型的变量&#xff0c;保存地址型数据  指针变量与其他类型…

关于SQL NOT IN判断失效的情况记录

1.准备测试数据 CREATE TABLE tmp_1 (val integer);CREATE TABLE tmp_2 (val integer, val2 integer);INSERT INTO tmp_1 (val) VALUES (1); INSERT INTO tmp_1 (val) VALUES (2); INSERT INTO tmp_2 (val) VALUES (1); INSERT INTO tmp_2 (val, val2) VALUES (NULL,0);2.测…

swiftui中设置建议最多5个tabItem项,多个tabItem项会被自动折叠起来

在swiftui中设置底部的菜单栏的时候&#xff0c;最多建议设置5个&#xff0c;如果超过了&#xff0c;会被自动折叠到More中&#xff0c;点击More就会出现类似list的样式显示&#xff0c;不是很友好。 最多按照5个默认设置的话&#xff0c;就会正常全部显示出来&#xff1a; 测…

(七)glDrawArry绘制

几何数据&#xff1a;vao和vbo 材质程序&#xff1a;vs和fs(顶点着色器和片元着色器) 接下来只需要告诉GPU&#xff0c;使用几何数据和材质程序来进行绘制。 #include <glad/glad.h>//glad必须在glfw头文件之前包含 #include <GLFW/glfw3.h> #include <iostrea…

红海云签约海新域集团,产业服务运营领军企业加速人力资源数字化转型

北京海新域城市更新集团有限公司&#xff08;以下简称“海新域集团”&#xff09;是北京市海淀国有资产投资集团有限公司一级监管企业&#xff0c;致力于成为国内领先的产业服务运营商。集团积极探索城市和产业升级新模式&#xff0c;通过对老旧、低效等空间载体重新定位规划、…

2024年新考纲下的PMP考试有多难?全面解读!

一、PMP考试是什么&#xff0c;PMP证书有什么用&#xff1f; PMP&#xff08;Project Management Professional&#xff09;是指项目管理专业人士。PMP考试由美国PMI发起&#xff0c;旨在严格评估项目管理人员的知识和技能&#xff0c;以确定其是否具备高品质的资格认证。 PM…

c进阶篇(四):内存函数

内存函数以字节为单位更改 1.memcpy memcpy 是 C/C 中的一个标准库函数&#xff0c;用于内存拷贝操作。它的原型通常定义在 <cstring> 头文件中&#xff0c;其作用是将一块内存中的数据复制到另一块内存中。 函数原型&#xff1a;void *memcpy(void *dest, const void…

手机如何充当电脑摄像头,新手使用教程分享(新)

手机如何充当电脑摄像头&#xff1f;随着科技的发展&#xff0c;智能手机已经成为我们日常生活中不可或缺的一部分。手机的摄像头除了拍摄记录美好瞬间之外&#xff0c;其实还有个妙用&#xff0c;那就是充当电脑的摄像头。手机摄像头充当电脑摄像头使用的话&#xff0c;我们就…

上位机图像处理和嵌入式模块部署(mcu 项目1:固件编写)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 说完了上位机的开发&#xff0c;接下来就是固件的开发。前面我们说过&#xff0c;目前使用的开发板是极海apm32f103的开发板。它自身包含了iap示例…

Linux - Shell 以及 权限问题

目录 Shell的运行原理 Linux权限问题 Linux权限的概念 如何实现用户账号之间的切换 如何仅提升当前指令的权限 如何将普通用户添加到信任列表 Linux权限管理 文件访问者的分类&#xff08;人&#xff09; 文件类型和访问权限&#xff08;事物属性&#xff09; 文件权限值的表…

【linux高级IO(一)】理解五种IO模型

&#x1f493;博主CSDN主页:杭电码农-NEO&#x1f493;   ⏩专栏分类:Linux从入门到精通⏪   &#x1f69a;代码仓库:NEO的学习日记&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学更多操作系统知识   &#x1f51d;&#x1f51d; Linux高级IO 1. 前言2. 重谈对…