计算机竞赛 opencv 图像识别 指纹识别 - python

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于机器视觉的指纹识别系统

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 课题背景

指纹是指人类手指上的条状纹路, 它们的形成依赖于胚胎发育时的环境。“没有2个完全相同的指纹”这一观点已经得到公认。指纹识别已经有了很长一段历史。

据考古学家证实:公元前6 000年以前, 指纹作为身份鉴别的工具已经在古叙利亚和中国开始应用。到了20世纪80年代,、光学扫描这2项技术的革新,
使得它们作为指纹取像的工具成为现实, 从而使指纹识别可以在其他领域中得以应用。

现在, 随着取像设备的引入及其飞速发展, 生物指纹识别技术的逐渐成熟, 可靠的比对算法的发现都为指纹识别技术提供了更广阔的舞台。

本项目实现了一种指纹识别系统,通过过滤过程来确定用户指纹是否与注册的指纹匹配。通过过滤技术对捕获的指纹进行处理,以从捕获的图像中去除噪声。去除噪声后的最终结果与注册的指纹进行特征匹配,以确定它们是否相同。

2 效果展示

在这里插入图片描述
在这里插入图片描述
3

3 具体实现

3.1 图像对比过滤

图像融合是一种图像增强方法,这里先融合两个图像便于特征点对比。利用的是opencv封装的函数

    cv2.addWeighted()

相关代码

    def apply_Contrast(img):
        alpha = 0.5 # assigned weight to the first image
        beta = 0.5 # assigned weight to the second image
        img_second = np.zeros(img.shape, img.dtype) # second image, copy of first one
        contrast = cv2.addWeighted(img, alpha, img_second, 0, beta) # applying contrast
        return contrast

3.2 图像二值化

简介

图像二值化( Image
Binarization)就是将图像上的像素点的灰度值设置为0或255,也就是将整个图像呈现出明显的黑白效果的过程。二值图像每个像素只有两种取值:要么纯黑,要么纯白。
在这里插入图片描述
二值图像数据足够简单,许多视觉算法都依赖二值图像。通过二值图像,能更好地分析物体的形状和轮廓。
在计算机视觉里,一般用矩阵来表示图像。也就是说,无论你的图片看上去多么好吃,对计算机来说都不过是个矩阵而已。在这个矩阵里,每一个像素就是矩阵中的一个元素。在三通道的彩色图像中,这个元素是由三个数字组成的元组。而对于单通道的灰度图像来说,这个元素就是一个数字。这个数字代表了图像在这个点的亮度,数字越大像素点也就越亮,在常见的八位单通道色彩空间中,0代表全黑,255代表全白。

相关代码

    
    def apply_Binarization(img):
        # if pixel value is greater then the threshold value it is assigned a singular color of either black or white
        _, mask = cv2.threshold(img, 100, 255, cv2.THRESH_BINARY_INV)
        return mask

3.3 图像侵蚀细化

图像侵蚀(腐蚀)

腐蚀(Erosion)- shrink image regions,侵蚀是数学形态学领域的两个基本算子之一,另一个是膨胀。
它通常应用于二值图像,但是有些版本可用于灰度图像。 算子对二值图像的基本作用是侵蚀前景像素(通常为白色像素)区域的边界。
因此,前景像素的区域尺寸缩小,并且这些区域内的孔洞变大。
在这里插入图片描述
图像细化

细化(Thinning)- structured erosion using image pattern
matching,细化是一种形态学操作,用于从二值图像中删除选定的前景像素,有点像侵蚀或开口。 它可以用于多种应用程序,但是对于骨架化特别有用。
在这种模式下,通常通过将所有行减少到单个像素厚度来整理边缘检测器的输出。 细化通常仅应用于二值图像,并产生另一个二值图像作为输出。

在这里插入图片描述
相关代码

    
    def apply_Erosion(img):
        kernal = np.ones((3,3), np.uint8) # shape applied to image, 3x3 square shape is applied to contrast image
        erosion = cv2.erode(img, kernal, iterations=1) # erosion mask applied to the contrast image to thin fingerprint ridges
        return erosion

3.4 图像增强

图像增强的主要目的是提高图像的质量和可辨识度,使图像更有利于观察或进一步分析处理。图像增强技术一般通过对图像的某些特征,例如边缘信息、轮廓信息和对比度等进行突出或增强,从而更好的显示图像的有用信息,提高图像的使用价值。图像增强技术是在一定标准下,处理后的图像比原图像效果更好。

相关代码

def apply_highlighting(img):
​        feature_points = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
​        Image_blue = np.array(feature_points, copy=True)
​    

        white_px = np.asarray([255, 255, 255])
        blue_px = np.asarray([0  , 255  , 255  ])
    
        (row, col, _) = feature_points.shape
    
        for r in range(row):
            for c in range(col):
                px = feature_points[r][c]
                if all(px == white_px):
                    Image_blue[r][c] = blue_px
        
        return Image_blue

3.5 特征点检测

指纹特征提取的主要目的是计算指纹核心点(Core)和细节点(Minutia)的特征信息。在提取指纹核心点时,采用的是Poincare
Index算法,该算法的思路是在指纹图像某像素点区域内,按围绕该点的闭合曲线逆时针方向旋转一周,计算方向角度旋转变化量的和,最后以计算结果来寻找核心点。计算过程中如果某像素点的Poincare
Index值为π则判定为核心点,然后便提取该点的坐标与方向场信息,记为P(Cx, Cy, θc)。

相关代码

def show_featurepoints(img):
​        

​    #show feature points found in fingerprint using orb detector
​    orb  = cv2.ORB_create(nfeatures=1200)
​    keypoints, descriptors = orb.detectAndCompute(img, None)
​    featurepoint_img = img
​    featurepoint_img = cv2.drawKeypoints(featurepoint_img, keypoints, None, color=(255, 0 ,0))return featurepoint_img

4 OpenCV

简介
Opencv(Open Source Computer Vision
Library)是一个基于开源发行的跨平台计算机视觉库,它实现了图像处理和计算机视觉方面的很多通用算法,已成为计算机视觉领域最有力的研究工具。在这里我们要区分两个概念:图像处理和计算机视觉的区别:图像处理侧重于“处理”图像–如增强,还原,去噪,分割等等;而计算机视觉重点在于使用计算机来模拟人的视觉,因此模拟才是计算机视觉领域的最终目标。
OpenCV用C++语言编写,它具有C ++,Python,Java和MATLAB接口,并支持Windows,Linux,Android和Mac OS,
如今也提供对于C#、Ch、Ruby,GO的支持。

基础功能速查表
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/77236.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

[oneAPI] 手写数字识别-GAN

[oneAPI] 手写数字识别-GAN 手写数字识别参数与包加载数据模型训练过程结果 oneAPI 比赛:https://marketing.csdn.net/p/f3e44fbfe46c465f4d9d6c23e38e0517 Intel DevCloud for oneAPI:https://devcloud.intel.com/oneapi/get_started/aiAnalyticsToolki…

【STM32】 工程

🚩 WRITE IN FRONT 🚩 🔎 介绍:"謓泽"正在路上朝着"攻城狮"方向"前进四" 🔎🏅 荣誉:2021|2022年度博客之星物联网与嵌入式开发TOP5|TOP4、2021|2022博客之星TO…

html2canvas生成图片地址Base64格式转成blob在转成file(二进制)可正常发送(保姆教程,复制粘贴可用)

开始: 最终结果: 1. html2canvas方法生成的图片地址已Base64编码形式放在img标签src中可直接展示生成的图片(注意页面标签获取位置,还有个setTimeout页面渲染需要时间) setTimeout(function () {var result {};v…

DiffusionDet: Diffusion Model for Object Detection

DiffusionDet: Diffusion Model for Object Detection 论文概述不同之处整体流程 论文题目:DiffusionDet: Diffusion Model for Object Detection 论文来源:arXiv preprint 2022 论文地址:https://arxiv.org/abs/2211.09788 论文代码&#xf…

24、springboot的自动配置01--类条件注解@ConditionalOnClass、bean条件注解@ConditionalOnBean

条件注解的理解:该注解指定了一些条件,只有符合这些条件,被该注解修饰的类或方法才能生效。 这些条件可以是yml配置文件里面的属性等数据是否存在,也可以是一些依赖驱动是否存在的条件、也可以是指定的bean是否存在等。 springbo…

Golang协程,通道详解

进程、线程以及并行、并发 关于进程和线程 进程(Process)就是程序在操作系统中的一次执行过程,是系统进行资源分配和调度的基本单位,进程是一个动态概念,是程序在执行过程中分配和管理资源的基本单位,每一…

iTOP-RK3588开发板安装TFTP服务端

首先在 ubuntu 中执行以下命令安装 TFTP 服务: apt-get install tftp-hpa tftpd-hpa 安装完成以后创建 TFTP 服务器工作目录,并对 TFTP 的服务配置文件进行修改,具体步骤如下: 输入以下命令在家目录创建 tftpboot 文件夹,如下图所示&#x…

Prompt、RAG、微调还是重新训练?如何选择正确的生成式AI的使用方法

生成式人工智能正在快速发展,许多人正在尝试使用这项技术来解决他们的业务问题。一般情况下有4种常见的使用方法: Prompt EngineeringRetrieval Augmented Generation (RAG 检索增强生成)微调从头开始训练基础模型(FM) 本文将试图根据一些常见的可量化…

爬虫逆向实战(十七)--某某丁简历登录

一、数据接口分析 主页地址:某某丁简历 1、抓包 通过抓包可以发现数据接口是submit 2、判断是否有加密参数 请求参数是否加密? 通过查看“载荷”模块可以发现有一个enPassword加密参数 请求头是否加密? 通过查看请求头可以发现有一个To…

C++学习系列之动态库报错问题

C学习系列之动态库报错问题 啰嗦问题解决总结 啰嗦 动态库已建,C文件一加,全是报错,一片红。 问题 解决 解决办法就是加标头 总结 小问题,记录一下。

基于 KubeSphere 的应用容器化在智能网联汽车领域的实践

公司简介 某国家级智能网联汽车研究中心成立于 2018 年,是担当产业发展咨询与建议、共性技术研发中心、创新成果转化的国家级创新平台,旨在提高我国在智能网联汽车及相关产业在全球价值链中的地位。 目前着力建设基于大数据与云计算的智能汽车云端运营…

边缘智能聚焦嵌入式世界

没有什么超出了我们的想象力的极限,我们习惯于在间谍电影中看到的东西需要进行大规模升级,以超越现在认为的标准。 德国纽伦堡—一切都超出了我们的想象范围,而且我们习惯于在间谍电影中看到的东西需要进行大规模升级,以超越现在认…

段错误核心转储

在linux下运行可执行文件的时候出现了以下错误: error:segmentation fault core dumped解决方法: #查看core文件大小判断是否可写 $ ulimit -a real-time non-blocking time (microseconds, -R) unlimited core file size (blocks, -c) …

30W IP网络有源音箱 校园广播音箱

SV-7042XT是深圳锐科达电子有限公司的一款2.0声道壁挂式网络有源音箱,具有10/100M以太网接口,可将网络音源通过自带的功放和喇叭输出播放,可达到功率30W。同时它可以外接一个30W的无源副音箱,用在面积较大的场所。5寸进口全频低音…

初始C语言(6)——详细讲解表达式求值以及其易错点

系列文章目录 第一章 “C“浒传——初识C语言(1)(更适合初学者体质哦!) 第二章 初始C语言(2)——详细认识分支语句和循环语句以及他们的易错点 第三章 初阶C语言(3)——…

GaussDB 实验篇+openGauss的4种1级分区案例

✔ 范围分区/range分区 -- 创建表 drop table if exists zzt.par_range; create table if not exists zzt.par_range (empno integer,ename char(10),job char(9),mgr integer(4),hiredate date,sal numeric(7,2),comm numeric(7,2),deptno integer,constraint pk_par_emp pri…

Python程序设计——列表

一、引言 关键点:一个列表可以存储任意大小的数据集合。 程序一般都需要存储大量的数值。假设,举个例子,需要读取100个数字,计算出它们的平均值,然后找出多少个数字是高于这个平均值的。程序首先读取100个数字并计算它…

C语言刷题训练DAY.6

1.进制AB 解题思路&#xff1a; 这里我们按照备注的提示&#xff0c;调整输入格式。 注意&#xff1a;%x是十六进制的数字 %o是八进制的数字 解题代码&#xff1a; #include<stdio.h> int main() {int a 0;int b 0;scanf("0x%x 0%o", &a, &b);pri…

自定义Android滑块拼图验证控件

自定义Android滑块拼图验证控件 拼图认证视图默认策略工具类参考 1、继承自AppCompatImageView&#xff0c;兼容ImageView的scaleType设置&#xff0c;可设置离线/在线图片。 2、通过设置滑块模型&#xff08;透明背景的图形块&#xff09;设置滑块&#xff08;和缺省块&#x…

sql server 存储过程 set ansi_nulls set quoted_identifier,out 、output

SQL-92 标准要求在对空值(NULL) 进行等于 () 或不等于 (<>) 比较时取值为 FALSE。 当 SET ANSI_NULLS 为 ON 时&#xff0c;即使 column_name 中包含空值&#xff0c;使用 WHERE column_name NULL 的 SELECT 语句仍返回零行。即使 column_name 中包含非空值&#xff0c…