基于令牌级 BERT 嵌入的趋势生成句子级嵌入

一、说明

        句子(短语或段落)级别嵌入通常用作许多 NLP 分类问题的输入,例如,在垃圾邮件检测和问答 (QA) 系统中。在我上一篇文章发现不同级别的BERT嵌入的趋势中,我讨论了如何生成一个向量表示,该表示包含有关上下文嵌入值相对于同一令牌的静态嵌入的变化的信息,然后您可以将其用作生成句子级嵌入的组件。本文扩展了此主题,探讨了您需要从句子中的哪些标记中派生此类趋势向量,以便能够为整个句子生成有效的嵌入。

二、直觉

        与此相关的第一个问题是:您需要从句子中的多少个标记中派生嵌入才能为整个句子生成有效的嵌入?如果你还记得上一篇文章中的讨论,我们得到了一个向量——派生为句子中最重要的单词——其中包括有关整个句子上下文的信息。但是,为了更好地了解句子上下文,最好为与该最重要的单词在语法上最相关的单词提供这样的向量。我们为什么需要这个?

        生活中一个简单的类比可以帮助回答这个问题:如果你坐在塔内的餐厅里欣赏周围的美景,你考虑的景色将不包括塔本身。要拍摄塔楼景观的照片,您首先需要离开塔楼。

        好的,我们如何确定与句子中最重要的单词在语法上最相关的单词?(也就是说,您需要根据前面的类比决定拍摄塔的最佳位置)答案是:借助注意力权重,您也可以从BERT模型获得。

三、实现

        在遵循本文其余部分讨论的代码之前,您需要参考上一篇文章中提供的示例(我们将使用该示例中定义的模型和派生向量表示)。您需要做的唯一更正如下: 创建模型时,请确保使模型不仅返回隐藏状态,还返回注意力权重:

model = BertModel.from_pretrained(‘bert-base-uncased’,
 output_hidden_states = True, # so that the model returns all hidden-states.
 output_attentions = True
 ) 

        其他所有内容,包括例句,都可以不加修改地使用。实际上,我们只使用第一个例句:“我想要一个苹果。

        下面我们将确定语法上最接近最重要单词的单词(在这个特定示例中为 Want)。为此,我们检查所有 12 层中的注意力权重。首先,我们创建一个空数组(我们不计算特殊符号,不包括第一个和最后一个符号):

a = np.empty([0, len(np.sum(outputs[0].attentions[0][0][11].numpy(), axis=0)[1:-1])])

接下来,我们填写注意力权重矩阵:

for i in range(12):
 a = np.vstack([a,np.sum(outputs[0].attentions[0][0][i].numpy(), axis=0)[1:-1]])

我们对标点符号不感兴趣。因此,我们将删除矩阵中的最后一列:

a = np.delete(a, -1, axis=1)

所以我们的矩阵现在看起来如下(12x4,即 12 层和 4 个单词)

print(a)
[[0.99275106 1.00205731 0.76726311 0.72082734]
 [0.7479955 1.16846883 0.63782167 1.39036024]
 [1.23037624 0.40373796 0.57493907 0.25739866]
 [1.319888 1.21090519 1.37013197 0.7479018 ]
 [0.48407069 1.15729702 0.54152751 0.57587731]
 [0.47308242 0.61861634 0.46330488 0.47692096]
 [1.23776317 1.2546916 0.92190945 1.2607218 ]
 [1.19664812 0.51989007 0.48901123 0.65525496]
 [0.5389185 0.98384732 0.8789593 0.98946768]
 [0.75819892 0.80689037 0.5612824 1.10385513]
 [0.14660755 1.10911655 0.84521955 1.00496972]
 [0.77081972 0.79827666 0.45695013 0.36948431]]

        现在让我们确定 Want 的哪些层(索引为 1 的第二列)最受关注:

print(np.argmax(a,axis=1))
b = a[np.argmax(a,axis=1) == 1]
array([1, 3, 0, 2, 1, 1, 3, 0, 3, 3, 1, 1])

        接下来,我们可以确定在 Want 处于领先地位的层中,哪个令牌在 Want 之后引起更多关注。为此,我们首先删除“想要”列,然后探索其余三个:

c = np.delete(b, 1, axis=1)
d = np.argmax(c, axis =1)
print(d)
counts = np.bincount(d)
print(np.argmax(counts))
[0 2 2 2 0]
2

        上面显示,我们有苹果这个词(在这里删除Want之后,Apple的索引是2)作为与单词Want在语法上最相关的一个。这是意料之中的,因为这些词分别表示直接宾语和及物动词。

_l12_1 = hidden_states[0][12][0][4][:10].numpy()
_l0_1 = hidden_states[0][0][0][4][:10].numpy()
_l0_12_1 = np.log(_l12_1/_l0_1)
_l0_12_1 = np.where(np.isnan(_l0_12_1), 0, _l0_12_1)

        现在让我们比较一下从单词Apple和Want的嵌入派生的向量。

print(_l0_12_1)
array([ 3.753544 , 1.4458075 , -0.56288993, -0.44559467, 0.9137548 ,
 0.33285233, 0. , 0. , 0. , 0. ],
 dtype=float32)
 
print(l0_12_1) # this vector has been defined in the previous post
array([ 0. , 0. , 0. , 0. , -0.79848075,
 0.6715901 , 0.30298436, -1.6455574 , 0.1162319 , 0. ],
 dtype=float32)

        如您所见,上述两个向量中的一对匹配元素中的一个值在大多数情况下为零,而另一个值为非零 — 即向量看起来互补(记住塔视图类比:从塔上可以看到相邻的景点,但为了看到塔本身——也许是主要景点——你需要离开它)所以, 您可以安全地按元素对这些向量求和,以将可用信息组合到单个向量中。

s = _l0_12_1 + l0_12_1
print(s)
array([ 3.753544 , 1.4458075 , -0.56288993, -0.44559467, 0.11527407,
 1.0044425 , 0.30298436, -1.6455574 , 0.1162319 , 0. ],
 dtype=float32)

        上面的向量接下来可以用作句子级分类的输入。

四、结论

        本文提供了从静态嵌入转向上下文嵌入时如何根据令牌级 BERT 嵌入的趋势生成句子级嵌入的直观信息以及代码。然后,可以将此句子级嵌入用作BERT生成的用于句子分类的CLS令牌嵌入的替代方法,这意味着您可以尝试这两种方法,看看哪一个最适合您的特定问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:/a/76911.html

如若内容造成侵权/违法违规/事实不符,请联系我们进行投诉反馈qq邮箱809451989@qq.com,一经查实,立即删除!

相关文章

webSocket 聊天室 node.js 版

全局安装vue脚手架 npm install vue/cli -g 创建 vue3 ts 脚手架 vue create vue3-chatroom 后端代码 src 同级目录下建 server: const express require(express); const app express(); const http require(http); const server http.createServer(app);const io req…

【Django】Task2 了解models和使用admin后台

文章目录 【Django】Task2 了解models和使用admin后台1.什么是models1.1常用字段类型说明1.2常用配置参数1.3models示例 2.使用Django的admin管理模块2.1admin管理模块介绍2.2创建管理员用户2.3定义models实体对象2.4注册对象2.5合并数据库2.6启动项目并进入管理后台 3.springb…

【IMX6ULL驱动开发学习】06.DHT11温湿度传感器驱动程序编写与测试

一、DHT11简介 DHT11是一款可测量温度和湿度的传感器。比如市面上一些空气加湿器,会测量空气中湿度,再根据测量结果决定是否继续加湿。 DHT11数字温湿度传感器是一款含有已校准数字信号输出的温湿度复合传感器,具有超小体积、极低功耗的特点…

TiDB数据库从入门到精通系列之六:使用 TiCDC 将 TiDB 的数据同步到 Apache Kafka

TiDB数据库从入门到精通系列之六:使用 TiCDC 将 TiDB 的数据同步到 Apache Kafka 一、技术流程二、搭建环境三、创建Kafka changefeed四、写入数据以产生变更日志五、配置 Flink 消费 Kafka 数据 一、技术流程 快速搭建 TiCDC 集群、Kafka 集群和 Flink 集群创建 c…

清除pip安装库时的缓存

目录 1、命令清除缓存 2、路径手动清除 在使用pip安装Python库时,如果之前已经下载过该库,pip会默认使用缓存来安装库,而不是重新从网络上下载。缓存文件通常存储在用户目录下的缓存文件夹中,具体位置因操作系统和Python版本而异…

剑指offer43.1~n整数中1出现的次数

看到这么大的数据规模就直到用暴力法肯定会超时&#xff0c;但是还是花一分钟写了一个试一下&#xff0c;果然超时 class Solution {public int countDigitOne(int n) {int count 0;for(int i1;i<n;i){countdigitOneInOneNum(i);}return count;}public int digitOneInOneNu…

【CSS】禁用元素鼠标事件(例如实现元素禁用效果)

文章目录 基本用法 基本用法 pointer-events 属性指定在什么情况下 (如果有) 某个特定的图形元素可以成为鼠标事件。实际运用中可以通过对auto 和none动态控制&#xff0c;来动态实现元素的禁用效果。 属性描述auto与pointer-events属性未指定时的表现效果相同&#xff0c;对…

Java版企业电子招投标采购系统源码之首页设计 tbms

​ 功能描述 1、门户管理&#xff1a;所有用户可在门户页面查看所有的公告信息及相关的通知信息。主要板块包含&#xff1a;招标公告、非招标公告、系统通知、政策法规。 2、立项管理&#xff1a;企业用户可对需要采购的项目进行立项申请&#xff0c;并提交审批&#xff0c;查…

Curson 编辑器

Curson 汉化与vacode一样 Curson 自带chat功能 1、快捷键ctrlk(代码中编辑) 2、快捷键ctrll 右侧打开窗口

spark的standalone 分布式搭建

一、环境准备 集群环境hadoop11&#xff0c;hadoop12 &#xff0c;hadoop13 安装 zookeeper 和 HDFS 1、启动zookeeper -- 启动zookeeper(11,12,13都需要启动) xcall.sh zkServer.sh start -- 或者 zk.sh start -- xcall.sh 和zk.sh都是自己写的脚本-- 查看进程 jps -- 有…

CentOS系统环境搭建(十五)——CentOS安装Kibana

centos系统环境搭建专栏&#x1f517;点击跳转 关于Elasticsearch的安装请看CentOS系统环境搭建&#xff08;十二&#xff09;——CentOS7安装Elasticsearch。 CentOS安装Kibana 1.下载 &#x1f517;https://www.elastic.co/downloads/past-releases/kibana-7-17-12 若你是…

Ansys Zemax | 手机镜头设计 - 第 1 部分:光学设计

本文是 3 篇系列文章的一部分&#xff0c;该系列文章将讨论智能手机镜头模组设计的挑战&#xff0c;从概念、设计到制造和结构变形的分析。本文是三部分系列的第一部分&#xff0c;将专注于OpticStudio中镜头模组的设计、分析和可制造性评估。&#xff08;联系我们获取文章附件…

【变形金刚01】attention和transformer所有信息

图1.来源&#xff1a;Arseny Togulev在Unsplash上的照片 一、说明 这是一篇 长文 &#xff0c;几乎讨论了人们需要了解的有关注意力机制的所有信息&#xff0c;包括自我注意、查询、键、值、多头注意力、屏蔽多头注意力和转换器&#xff0c;包括有关 BERT 和 GPT 的一些细节。因…

磁力线试验+多图

今天要磨制一个钢针工具。磨下来很多的铁屑&#xff0c;灵机一动&#xff0c;何不来试验一下磁铁的磁力线。这可是难得的材料。 下放7颗强力磁铁&#xff0c;可见强力磁铁的磁力线非常集中。 下放直径4CM的喇叭磁铁 强力磁铁U型铁 强力磁铁E型铁氧体磁芯&#xff0c;可见磁力线…

可视化绘图技巧100篇进阶篇(九)-三维百分比堆积条形图(3D Stacked Percentage Bar Chart)

目录 前言 适用场景 绘图工具及代码实现 帆软 实现思路 方案一&#xff1a;使用计算指标 上传数据 添加组件 生成图表 添加计算字段 生成分区柱形图 生成百分比堆积条形图 美化图表 设置标签 设置颜色 效果查看 PC 端 移动端 方案二&#xff1a;使用自助数…

tk切换到mac的code分享

文章目录 前言一、基础环境配置二、开发软件与扩展1.用到的开发软件与平替、扩展情况 总结 前言 最近换上了coding人生的第一台mac&#xff0c;以前一直偏好tk&#xff0c;近来身边的朋友越来越多的用mac了&#xff0c;win的自动更新越来越占磁盘了&#xff0c;而且win11抛弃了…

ReactNative进阶(三十四):ipa Archive 阶段报错error: Multiple commands produce问题修复及思考

文章目录 一、前言二、问题描述三、问题解决四、拓展阅读五、拓展阅读 一、前言 在应用RN开发跨平台APP阶段&#xff0c;从git中拉取项目&#xff0c;应用Jenkins进行组包时&#xff0c;发现最终生成的ipa安装包版本号始终与项目中设置的版本号不一致。 二、问题描述 经过仔…

svn 过滤文件

1. 右键点击&#xff0c;依次选择 TortoiseSVN -> Settings 2. 添加需要过滤的后缀/关键词【 *.iml *.idea *.jar *.class 】

01- vdom 和模板编译源码

组件渲染的过程 template --> ast --> render --> vDom --> 真实的Dom --> 页面 Runtime-Compiler和Runtime-Only的区别 - 简书 编译步骤 模板编译是Vue中比较核心的一部分。关于 Vue 编译原理这块的整体逻辑主要分三个部分&#xff0c;也可以说是分三步&am…

Nginx转发请求到后端服务报400 Bad Request

问题描述 系统部署好后&#xff0c;进行测试时发现有部分接口出错&#xff0c;项目采用Nginx作为后端代理服务器&#xff0c;有Nginx统一将请求转发到后端的网关服务&#xff0c;再由网关服务路由到具体的服务上&#xff0c;发布好后&#xff0c;大部分接口都是正常的&#xff…